BHИMAHИE! Тeмы "ЦOP 7-9 клacc к уроку" ecть в фopмaтe PDF и SWF!
Возможный вариант просмотра SWF-файлов: скачать адобовский флэш-плейер flashplayer_32 скачать здесь. Положить его на рабочий стол компа (или закачать на флэшку и подключить ее к компу). Кликнуть по ссылке нужный ЦОР со страницы сайта, открыть скаченный файл. Приятного просмотра!
Как изменяются показания спидометра в начале движения и при торможении автомобиля?
Какая физическая величина характеризует изменение скорости?
При движении тел их скорости обычно меняются либо по модулю, либо по направлению, либо жеодновременно как по модулю, так и по направлению.
Скорость шайбы, скользящей по льду, уменьшается с течением времени до полной остановки. Если взять в руки камень и разжать пальцы, то при падении камня его скорость постепенно нарастает. Скорость любой точки окружности точильного круга при неизменном числе оборотов в единицу времени меняется только по направлению, оставаясь постоянной по модулю (рис 1.26). Если бросить камень под углом к горизонту, то его скорость будет меняться и по модулю, и по направлению.
Изменение скорости тела может происходить как очень быстро (движение пули в канале ствола при выстреле из винтовки), так и сравнительно медленно (движение поезда при его отправлении).
Физическая величина, характеризующая быстроту изменения скорости, называется ускорением.
Рассмотрим случай криволинейного и неравномерного движения точки. В этом случае её скорость с течением времени изменяется как по модулю, так и по направлению. Пусть в некоторый момент времени t точка занимает положение М и имеет скорость (рис. 1.27). Спустя промежуток времени Δt точка займёт положение М1 и будет иметь скорость
1. Изменение скорости за время Δt1 равно Δ
1 =
1 -
. Вычитание вектора
можно произвести путём прибавления к вектору
1 вектора (-
):
Δ1 =
1 -
=
1 + (-
).
Согласно правилу сложения векторов вектор изменения скорости Δ1 направлен из начала вектора
1 в конец вектора (-
), как это показано на рисунке 1.28.
Поделив вектор Δ1 на промежуток времени Δt1 получим вектор, направленный так же, как и вектор изменения скорости Δ
1. Этот вектор называют средним ускорением точки за промежуток времени Δt1. Обозначив его через
cр1, запишем:
По аналогии с определением мгновенной скорости определим мгновенное ускорение. Для этого найдём теперь средние ускорения точки за всё меньшие и меньшие промежутки времени:
При уменьшении промежутка времени Δt вектор Δ уменьшается по модулю и меняется по направлению (рис. 1.29). Соответственно средние ускорения также меняются по модулю и направлению. Но при стремлении промежутка времени Δt к нулю отношение изменения скорости к изменению времени стремится к определённому вектору как к своему предельному значению. В механике эту величину называют ускорением точки в данный момент времени или просто ускорением и обозначают
.
Ускорение точки — это предел отношения изменения скорости Δ к промежутку времени Δt, в течение которого это изменение произошло, при стремлении Δt к нулю.
Ускорение направлено так, как направлен вектор изменения скорости Δ при стремлении промежутка времени Δt к нулю. В отличие от направления скорости, направление вектора ускорения нельзя определить, зная траекторию точки и направление движения точки по траектории. В дальнейшем на простых примерах мы увидим, как можно определить направление ускорения точки при прямолинейном и криволинейном движениях.
В общем случае ускорение направлено под углом к вектору скорости (рис. 1.30). Полное ускорение характеризует изменение скорости и по модулю, и по направлению. Часто полное ускорение считается равным векторной сумме двух ускорений — касательного (
к) и центростремительного (
цс). Касательное ускорение
к характеризует изменение скорости по модулю и направлено по касательной к траектории движения. Центростремительное ускорение
цс характеризует изменение скорости по направлению и перпендикулярно касательной, т. е. направлено к центру кривизны траектории в данной точке. В дальнейшем мы рассмотрим два частных случая: точка движется по прямой и скорость изменяется только по модулю; точка движется равномерно по окружности и скорость изменяется только по направлению.
Единица ускорения.
Движение точки может происходить как с переменным, так и с постоянным ускорением. Если ускорение точки постоянно, то отношение изменения скорости к промежутку времени, за которое это изменение произошло, будет одним и тем же для любого интервала времени. Поэтому, обозначив через Δt некоторый произвольный промежуток времени, а через Δ — изменение скорости за этот промежуток, можно записать:
Так как промежуток времени Δt — величина положительная, то из этой формулы следует, что если ускорение точки с течением времени не изменяется, то оно направлено так же, как и вектор изменения скорости. Таким образом, если ускорение постоянно, то его можно истолковать как изменение скорости в единицу времени. Это позволяет установить единицы модуля ускорения и его проекций.
Запишем выражение для модуля ускорения:
Отсюда следует, что:
модуль ускорения численно равен единице, если за единицу времени модуль вектора изменения скорости изменяется на единицу.
Если время измерено в секундах, а скорость — в метрах в секунду, то единица ускорения — м/с2 (метр на секунду в квадрате).
Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский
Кинематика - Физика, учебник для 10 класса - Класс!ная физика
Физика и познание мира --- Что такое механика --- Механическое движение. Система отсчёта --- Способы описания движения --- Траектория. Путь. Перемещение --- Равномерное прямолинейное движение. Скорость. Уравнение движения --- Примеры решения задач по теме «Равномерное прямолинейное движение» --- Сложение скоростей --- Примеры решения задач по теме «Сложение скоростей» --- Мгновенная и средняя скорости --- Ускорение --- Движение с постоянным ускорением --- Определение кинематических характеристик движения с помощью графиков --- Примеры решения задач по теме «Движение с постоянным ускорением» --- Движение с постоянным ускорением свободного падения --- Примеры решения задач по теме «Движение с постоянным ускорением свободного падения» --- Равномерное движение точки по окружности --- Кинематика абсолютно твёрдого тела. Поступательное и вращательное движение --- Кинематика абсолютно твёрдого тела. Угловая скорость. Связь между линейной и угловой скоростями --- Примеры решения задач по теме «Кинематика твёрдого тела»