Вверх
Диэлектрики в электростатическом поле
Касс!ная физика на Youtube
Занимательные фишки - 7 класс
 Ответы 7 классу
ГДЗ 7 класс
 Ответы 8 класс
Занимательные фишки - 8 класс
ГДЗ  8 классу
Занимательные фишки - 9 класс
ГДЗ  8 классу
Конспекты, учебники, видео - 10-11 класс
Физика для  чайников
"Что кажется нам чудом, на самом деле таковым не является!" - Симон Стевин
Но, что будет, если кота Шрёдингера засунуть в бутылку Клейна и обмотать всё лентой Мёбиуса?

Физика для чайников
Задачи-загадки по физике

Инфографика по физике
Ребусы по физике

Диафильмы по физике
Кроссворды по физике

Презентации по физике
Головоломки

Диэлектрики в электростатическом поле

«Физика - 10 класс»

Какое влияние оказывают на электростатическое поле тела, не являющиеся проводниками?
Для выяснения этого вопроса надо ближе познакомиться со строением таких тел.

У изолятора или диэлектрика электрические заряды, а точнее, электрически заряженные частицы — электроны и ядра в нейтральных атомах связаны друг с другом. Они не могут, подобно свободным зарядам проводника, перемещаться под действием электрического поля по всему объёму тела.

Различие в строении проводников и диэлектриков приводит к тому, что они по- разному ведут себя в электростатическом поле. Электрическое поле может существовать внутри диэлектрика.

Чтобы понять, как незаряженный диэлектрик создаёт электрическое поле, сначала познакомимся с электрическими свойствами нейтральных атомов и молекул.

Изоляторы в физике обычно называют диэлектриками от греческого «диа» — через и английского «электрик» — электрический (термином «диэлектрики» обозначают вещества, через которые передаются электромагнитные взаимодействия)

Атомы и молекулы состоят из положительно заряженных частиц — ядер и отрицательно заряженных частиц — электронов.

На рисунке 14.17 изображена схема простейшего атома — атома водорода. Положительный заряд атома (заряд ядра) сосредоточен в его центре.

Электрон движется в атоме с большой скоростью. Один оборот вокруг ядра он делает за очень малое время, порядка 10-15 с. Поэтому, например, уже за 10 9 с он успевает совершить миллион оборотов и, следовательно, миллион раз побывать в двух любых точках 1 и 2, расположенных симметрично относительно ядра. Это даёт основание считать, что в среднем по времени центр распределения отрицательного заряда приходится на середину атома, т. е. совпадает с положительно заряженным ядром.

Однако так обстоит дело не всегда. Рассмотрим молекулу поваренной соли NaCl (рис. 14.18).

Атом натрия имеет во внешней оболочке один валентный электрон, слабо связанный с атомом. У атома хлора семь валентных электронов. При образовании молекулы единственный валентный электрон натрия захватывается хлором. Оба нейтральных атома превращаются в систему из двух ионов с зарядами противоположных знаков. Положительный и отрицательный заряды не распределены теперь симметрично по объёму молекулы: центр распределения положительного заряда приходится на ион натрия, а отрицательного — на ион хлора.


Электрический диполь.




На большом расстоянии такую молекулу можно приближённо рассматривать как электрический диполь (рис. 14.19).

Электрическим диполем называют систему двух равных по модулю, но противоположных по знаку зарядов, находящихся на некотором расстоянии друг от друга.


Два вида диэлектриков.


Существующие диэлектрики можно разбить на два вида:

полярные, состоящие из таких молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают;

неполярные, состоящие из атомов или молекул, у которых центры распределения положительных и отрицательных зарядов совпадают. Следовательно, молекулы у этих двух видов диэлектриков разные.

К полярным диэлектрикам относятся спирты, вода и другие вещества; к неполярным — инертные газы, кислород, водород, бензол, полиэтилен и др.


Поляризация полярных диэлектриков.


Полярный диэлектрик состоит из молекул, которые можно рассматривать как электрические диполи. Тепловое движение приводит к беспорядочной ориентации диполей (рис. 14.26), поэтому на поверхности диэлектрика, а также и в любом его объёме, содержащем большое число молекул (выделенный прямоугольник на рисунке 14.26), электрический заряд в среднем равен нулю.

Напряжённость электрического поля в диэлектрике в среднем также равна нулю.

Поместим диэлектрик в однородное электрическое поле. Со стороны этого поля на каждый электрический диполь будут действовать две силы, одинаковые по модулю, но противоположные по направлению (рис. 14.27, а).

Они создадут момент сил, стремящийся повернуть диполь так, чтобы его ось была направлена по силовым линиям поля (рис. 14.27, б). При этом положительные заряды смещаются в направлении электрического поля, а отрицательные — в противоположную сторону.

Смещение положительных и отрицательных связанных зарядов диэлектрика в противоположные стороны называют поляризацией.

Однако тепловое движение препятствует созданию упорядоченной ориентации всех диполей. Только при температуре, стремящейся к абсолютному нулю, все диполи выстраивались бы вдоль силовых линий. Таким образом, под влиянием поля происходит лишь частичная ориентация электрических диполей. Это означает, что в среднем число диполей, ориентированных вдоль поля, больше, чем число диполей, ориентированных против поля.

На рисунке 14.28 видно, что у положительно заряженной пластины на поверхности диэлектрика появляются преимущественно отрицательные заряды диполей, а у отрицательно заряженной — положительные. В результате на поверхности диэлектрика возникает связанный заряд. Внутри диэлектрика положительные и отрицательные заряды диполей компенсируют друг друга и средний поляризованный связанный электрический заряд по-прежнему равен нулю.


Поляризация неполярных диэлектриков.


Неполярный диэлектрик в электрическом поле также поляризуется. Под действием поля положительные и отрицательные заряды его молекулы смещаются в противоположные стороны и центры распределения положительного и отрицательного зарядов перестают совпадать, как и у полярной молекулы. Молекулы растягиваются (рис. 14.29). Такие деформированные молекулы можно рассматривать как электрические диполи, оси которых направлены вдоль поля. На поверхностях диэлектрика, примыкающих к заряженным пластинам, появляются связанные заряды противоположного знака, как и при поляризации полярного диэлектрика.

В результате поляризации возникает поле, создаваемое связанными поляризованными зарядами и направленное против внешнего поля (рис. 14.30).

Если напряжённость внешнего поля Е0, а напряжённость поля, создава емого поляризованными зарядами, Е1, то напряжённость поля внутри ди электрика равна:

Е = Е0 - Е1.

Поле внутри диэлектрика ослабляется. Степень ослабления поля зависит от свойств диэлектрика.

Физическая величина, равная отношению модуля напряжённости поля Е0 в вакууме к модулю напряжённости поля Е в диэлектрике, называется диэлектрической проницаемостью вещества


Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский




Электростатика - Физика, учебник для 10 класса - Класс!ная физика

Что такое электродинамика --- Электрический заряд и элементарные частицы. Закон сохранения заряд --- Закон Кулона. Единица электрического заряда --- Примеры решения задач по теме «Закон Кулона» --- Близкодействие и действие на расстоянии --- Электрическое поле --- Напряжённость электрического поля. Силовые линии --- Поле точечного заряда и заряженного шара. Принцип суперпозиции полей --- Примеры решения задач по теме «Напряжённость электрического поля. Принцип суперпозиции полей» --- Проводники в электростатическом поле --- Диэлектрики в электростатическом поле --- Потенциальная энергия заряженного тела в однородном электростатическом поле --- Потенциал электростатического поля и разность потенциалов --- Связь между напряжённостью электростатического поля и разностью потенциалов. Эквипотенциальные поверхности --- Примеры решения задач по теме «Потенциальная энергия электростатического поля. Разность потенциалов» --- Электроёмкость. Единицы электроёмкости. Конденсатор --- Энергия заряженного конденсатора. Применение конденсаторов --- Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора»



По следам "английских ученых"

  • Можно ли вскипятить воду звуком?

    Если у вас в доме вдруг пропало электричество, не работает электрический чайник, плита, и кончились спички, но зато вопреки всему во всю силу гремит музыка, давайте зададимся вопросом: можно ли вскипятить воду, используя звук? Насколько это реально?

Устали? - Отдохнем!



Новости

Азбука физики
Азбука физики
Фильмы об ученых
Фильмы об ученых
Викторины
Викторины Научные игрушки
Научные игрушки
Простые опыты
Простые опыты
Парадоксы
Парадоксы
Это интересно
Интересная физика
История техники
История техники
Физика детям
Физика для детей
Библиотека
Библиотека
Знаете ли вы
Знаете ли вы
История физики
История физики
Любознательным
Любознательным
Мысли вслух
Мысли вслух
Этюды об ученых
Ученые-физики
Задачи Г. Остера
Задачи Григория Остера
Умные книжки
Умные книжки по физике
Есть вопросик
Ответы на попросы по физике
Его величество
Все о человеке
Музеи науки
Научные музеи
Достижения
Новости науки и техники



Выпускникам

Как сдавать экзамены?
Тактика тестирования
Знаешь ли ты себя?
На урок

Класс!ная физика для любознательных

Презентации и диафильмы по физике

My-shop.ru - Интернет-магазин товаров для образования



Интернет-магазин Лабиринт