Вверх
Потенциальная энергия заряженного тела в однородном электростатическом поле
Касс!ная физика на Youtube
Занимательные фишки - 7 класс
 Ответы 7 классу
ГДЗ 7 класс
 Ответы 8 класс
Занимательные фишки - 8 класс
ГДЗ  8 классу
Занимательные фишки - 9 класс
ГДЗ  8 классу
Конспекты, учебники, видео - 10-11 класс
Физика для  чайников
 Олимпиады и конкурсы 7-11 класс. Мега-талант
"Что кажется нам чудом, на самом деле таковым не является!" - Симон Стевин
Но, что будет, если кота Шрёдингера засунуть в бутылку Клейна и обмотать всё лентой Мёбиуса?

Физика для чайников
Задачи-загадки по физике

Инфографика по физике
Ребусы по физике

Диафильмы по физике
Кроссворды по физике

Презентации по физике
Головоломки

Потенциальная энергия заряженного тела в однородном электростатическом поле

«Физика - 10 класс»

Вспомните из курса механики определение потенциальной энергии в поле силы тяжести.
Какие силы действуют на точечный заряд в электростатическом поле?
Какое поле называется однородным?

Заряженные тела притягивают или отталкивают друг друга. При перемещении заряженных тел, например листочков электроскопа, действующие на них силы совершают работу. Из механики известно, что система, способная совершить работу благодаря взаимодействию тел друг с другом, обладает потенциальной энергией. Значит, система заряженных тел обладает потенциальной энергией, называемой электростатической или электрической.

Понятие потенциальной энергии самое сложное в электростатике. Вспомните, как нелегко было представить себе, что такое потенциальная энергия в механике. Силу мы ощущаем непосредственно, а потенциальную энергию нет. На пятом этаже дома потенциальная энергия нашего тела больше, чем на первом. Но мы это никак не воспринимаем. Различие становится понятным, если вспомнить, что при подъёме вверх пришлось совершить работу, а также если представить себе, что произойдёт при падении с пятого этажа.

Энергия взаимодействия электронов с ядром в атоме и энергия взаимодействия атомов друг с другом в молекулах (химическая энергия) — это в основном электрическая энергия.

С точки зрения теории близкодействия на заряд непосредственно действует электрическое поле, созданное другим зарядом. При перемещении заряда действующая на него со стороны поля сила совершает работу. (В дальнейшем для краткости будем говорить просто о работе поля.) Поэтому можно утверждать, что заряженное тело в электрическом поле обладает энергией. Найдём потенциальную энергию заряда в однородном электрическом поле.


Работа при перемещении заряда в однородном электростатическом поле.


Однородное поле создают, например, большие параллельные металлические пластины, имеющие заряды противоположного знака. Это поле действует на заряд q с постоянной силой = q, подобно тому как Земля действует с постоянной силой = m на камень вблизи её поверхности.

Пусть пластины расположены вертикально (рис. 14.31), левая пластина В заряжена отрицательно, а правая — положительно. Вычислим работу, совершаемую полем при перемещении положительного заряда q из точки 1, находящейся на расстоянии d1 от левой пластины, в точку 2, расположенную на расстоянии d2 от неё. Точки 1 и 2 лежат на одной силовой линии. Электрическое поле при перемещении заряда совершит положительную работу:

А = qE(d1 - d2) = qEΔd.       (14.12)



Работа по перемещению заряда в электрическом поле не зависит от формы траектории, подобно тому как не зависит от формы траектории работа силы тяжести.

Докажем это непосредственным расчётом.

Пусть перемещение заряда происходит по кривой (рис. 14.32). Разобьём эту кривую на малые перемещения. Сила, действующая на заряд, остаётся постоянной (поле однородно), а угол а между направлением силы и направлением перемещения будет изменяться. Работа на малом перемещении Δ равна ΔА = qElΔlcosa. Очевидно, что |Δ|cosa = Δd — проекция малого перемещения на горизонтальное направление. Суммируя работы на малых перемещениях, получаем А = qEd.

С помощью аналогичных рассуждений можно вывести формулу для работы кулоновской силы при перемещении заряда q0 из точки 1 в точку 2 в неоднородном поле неподвижного точечного заряда q. При этом должно быть учтено, что сила зависит от расстояния до точечного заряда q. Для работы кулоновской силы в поле точечного заряда q справедливо выражение

Мы видим, что работа зависит только от положения начальной (r1) и конечной (r2) точек траектории и не зависит от формы траектории.

Электростатическая сила, действующая на заряды, является так же, как и силы тяжести, тяготения и упругости, консервативной силой.


Потенциальная энергия.


Поскольку работа электростатической силы не зависит от формы траектории точки её приложения, сила является консервативной, и её работа согласно формуле (5.22) равна изменению потенциальной энергии, взятому с противоположным знаком:

А = -(Wп2 - Wп1) = -ΔWп.         (14.13)

Сравнивая полученное выражение (14.12) с общим определением потенциальной энергии (14.13), видим, что ΔWп = Wп2 - Wп1 = -qEd. Считаем, что в точке 2 потенциальная энергия равна нулю. Тогда потенциальная энергия заряда в однородном электростатическом поле равна:

Wп = qEd,         (14.14)

где d — расстояние от точки 2 до любой точки, находящейся с точкой 2 на одной силовой линии.

Теперь получим формулу для потенциальной энергии заряда, находящегося в поле точечного заряда. Изменение потенциальной энергии заряда q0 при перемещении из точки 1 в точку 2 в неоднородном поле неподвижного точечного заряда q равно работе консервативной силы, взятой с обратным знаком:

Если считать, что в бесконечно удалённой точке потенциальная энергия равна нулю (при r2 → ∞ Wп2 — 0), то потенциальная энергия заряда q0 в некоторой точке, находящейся на расстоянии r от точечного заряда q, создающего поле: Потенциальная энергия прямо пропорциональна заряду q0, внесённому в поле.

Отметим, что формула (14.14) подобна формуле Wп = mgh для потенциальной энергии тела. Но заряд q в отличие от массы может быть как положительным, так и отрицательным.

Если поле совершает положительную работу, то потенциальная энергия заряженного тела при его свободном перемещении в поле в точку 2 уменьшается: ΔWп < 0. Одновременно согласно закону сохранения энергии растёт его кинетическая энергия. И наоборот, если работа отрицательна (например, при свободном движении положительно заряженной частицы в направлении, противоположном направлению вектора напряжённости поля Е; это движение подобно движению камня, брошенного вверх), то ΔWп > 0. Потенциальная энергия растёт, а кинетическая энергия уменьшается; частица тормозится.

На замкнутой траектории, когда заряд возвращается в начальную точку, работа поля равна нулю:

A= -ΔWп = -(Wп1 - Wп1) = 0.

Это — свойство полей консервативных сил.


Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский




Электростатика - Физика, учебник для 10 класса - Класс!ная физика

Что такое электродинамика --- Электрический заряд и элементарные частицы. Закон сохранения заряд --- Закон Кулона. Единица электрического заряда --- Примеры решения задач по теме «Закон Кулона» --- Близкодействие и действие на расстоянии --- Электрическое поле --- Напряжённость электрического поля. Силовые линии --- Поле точечного заряда и заряженного шара. Принцип суперпозиции полей --- Примеры решения задач по теме «Напряжённость электрического поля. Принцип суперпозиции полей» --- Проводники в электростатическом поле --- Диэлектрики в электростатическом поле --- Потенциальная энергия заряженного тела в однородном электростатическом поле --- Потенциал электростатического поля и разность потенциалов --- Связь между напряжённостью электростатического поля и разностью потенциалов. Эквипотенциальные поверхности --- Примеры решения задач по теме «Потенциальная энергия электростатического поля. Разность потенциалов» --- Электроёмкость. Единицы электроёмкости. Конденсатор --- Энергия заряженного конденсатора. Применение конденсаторов --- Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора»



По следам "английских ученых"

  • Можно ли вскипятить воду звуком?

    Если у вас в доме вдруг пропало электричество, не работает электрический чайник, плита, и кончились спички, но зато вопреки всему во всю силу гремит музыка, давайте зададимся вопросом: можно ли вскипятить воду, используя звук? Насколько это реально?

Устали? - Отдохнем!



Новости

Азбука физики
Азбука физики
Фильмы об ученых
Фильмы об ученых
Викторины
Викторины Научные игрушки
Научные игрушки
Простые опыты
Простые опыты
Парадоксы
Парадоксы
Это интересно
Интересная физика
История техники
История техники
Физика детям
Физика для детей
Библиотека
Библиотека
Знаете ли вы
Знаете ли вы
История физики
История физики
Любознательным
Любознательным
Мысли вслух
Мысли вслух
Этюды об ученых
Ученые-физики
Задачи Г. Остера
Задачи Григория Остера
Умные книжки
Умные книжки по физике
Есть вопросик
Ответы на попросы по физике
Его величество
Все о человеке
Музеи науки
Научные музеи
Достижения
Новости науки и техники



Выпускникам

Как сдавать экзамены?
Тактика тестирования
Знаешь ли ты себя?
На урок

Класс!ная физика для любознательных

Презентации и диафильмы по физике

My-shop.ru - Интернет-магазин товаров для образования

Интернет-магазин Лабиринт