Вверх
Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора»
Касс!ная физика на Youtube

Занимательные фишки - 7 класс

Конспекты - 7 класс

Занимательные фишки - 8 класс

Занимательные фишки - 9 класс

Конспекты, учебники, видео - 10-11 класс
"Что кажется нам чудом, на самом деле таковым не является!" - Симон Стевин
Но, что будет, если кота Шрёдингера засунуть в бутылку Клейна и обмотать всё лентой Мёбиуса?

Викторины

Диафильмы по физике

Презентации по физике

Ребусы и  кроссворды

Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора»

«Физика - 10 класс»

«Электроёмкость» — последняя тема раздела «Электростатика». При решении задач на эту тему могут потребоваться все сведения, полученные при изучении электростатики: закон сохранения электрического заряда, понятия напряжённости поля и потенциала, сведения о поведении проводников в электростатическом поле, о напряжённости поля в диэлектриках, о законе сохранения энергии применительно к электростатическим явлениям. Основной формулой при решении задач на электроёмкость является формула (14.22).


Задача 1.


Электроёмкость конденсатора, подключённого к источнику постоянного напряжения U = 1000 В, равна C1 = 5 пФ. Расстояние между его обкладками уменьшили в n = 3 раза. Определите изменение заряда на обкладках конденсатора и энергии электрического поля.


Р е ш е н и е.


Согласно формуле (14.22) заряд конденсатора q = CU. Отсюда изменение заряда Δq — (С2 - C)U = (nC1 - C1)U = (п — 1)С1U = 10-8 Кл.

Изменение энергии электрического поля


Задача 2.


Заряд конденсатора q = 3 • 10-8 Кл. Ёмкость конденсатора С = 10 пФ. Определите скорость, которую приобретает электрон, пролетая в конденсаторе путь от одной пластины к другой. Начальная скорость электрона равна нулю. Удельный заряд электрона


Р е ш е н и е.


Начальная кинетическая энергия электрона равна нулю, а конечная равна Применим закон сохранения энергии где А — работа электрического поля конденсатора:

Следовательно,

Окончательно




Задача 3.


Четыре конденсатора ёмкостями С1 = С2 = = 1 мкФ, С3 = 3 мкФ, С4 = 2 мкФ соединены, как показано на рисунке 14.46. К точкам А и В подводится напряжение U = 140 В. Определите заряд q1 и напряжение U1, на каждом из конденсаторов.


Р е ш е н и е.


Для определения заряда и напряжения прежде всего найдём ёмкость батареи конденсаторов. Эквивалентная ёмкость второго и третьего конденсаторов С2,3 = С2 + С3, а эквивалентную ёмкость всей батареи конденсаторов, представляющей собой три последовательно соединённых конденсатора ёмкостями С1, С2,3, С4, найдём из соотношения

1/Cэкв = 1 /С1 + 1/С2,3 + 1 /С4, Сэкв = (4/7) • 10-6 Ф.

Заряды на этих конденсаторах одинаковы:

q1 = q2,3 = q4 = Сэкв = 8 • 10-5 Кл.

Следовательно, заряд первого конденсатора q1 = 8 • 10-5 Кл, а разность потенциалов между его обкладками, или напряжение, U1 = q11 = 80 В.

Для четвёртого конденсатора аналогично имеем q4 = 8 • 10-5 Кл, U4 = q4/C4 = 40 В.

Найдём напряжение на втором и третьем конденсаторах: U2 = U3 = q2,3/C2,3 = 20 В.

Таким образом, на втором конденсаторе заряд q2 = C2U2 = 2 • 10-5 Кл, а на третьем конденсаторе q3 = C3U3 = 6 • 10-5 Кл. Отметим, что q2,3 = q2 + g3.


Задача 4.


Определите эквивалентную электрическую ёмкость в цепи, изображённой на рисунке (14.47 а), если ёмкости конденсаторов известны.


Р е ш е н и е.


Часто при решении задач, в которых требуется определить эквивалентную электрическую ёмкость, соединение конденсаторов не очевидно. В этом случае если удаётся определить точки цепи, в которых потенциалы равны, то можно соединить эти точки или исключить конденсаторы, присоединённые к этим точкам, так как они не могут накапливать заряд (Δφ = 0) и, следовательно, не играют роли при распределении зарядов.

В приведённой на рисунке (14.47, а) схеме нет очевидного параллельного или последовательного соединения конденсаторов, так как в общем случае φA ≠ φB в и к конденсаторам С1 и С2 приложены разные напряжения. Однако заметим, что в силу симметрии и равенства ёмкостей соответствующих конденсаторов потенциалы точек А и В равны. Следовательно, можно, например, соединить точки А и В. Схема преобразуется к виду, изображённому на рисунке (14.47, б). Тогда конденсаторы С1, так же как и конденсаторы С2, будут соединены параллельно и Сэкв определим по формуле 1/Сэкв = 1/2С1 + 1/2С2, откуда

Можно также просто не учитывать присутствие в схеме конденсатора СЗ, так как заряд на нём равен нулю. Тогда схема преобразуется к виду, изображённому на рисунке (14.47, в). Конденсаторы С1 и С2 соединены последовательно, следовательно,

Эквивалентные конденсаторы с С'экв соединены параллельно, так что окончательно получим такое же выражение для эквивалентной ёмкости:


Задача 5.


Энергия плоского воздушного конденсатора W1 = 2 • 10-7 Дж. Определите энергию конденсатора после заполнения его диэлектриком с диэлектрической проницаемостью ε = 2, если:

    1) конденсатор отключён от источника питания;

    2) конденсатор подключён к источнику питания.


Р е ш е н и е.


1) Так как конденсатор отключён от источника питания, то его заряд q0 остаётся постоянным. Энергия конденсатора до заполнения его диэлектриком после заполнения где С2 = εС1.

Тогда

Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский




Электростатика - Физика, учебник для 10 класса - Класс!ная физика

Что такое электродинамика --- Электрический заряд и элементарные частицы. Закон сохранения заряд --- Закон Кулона. Единица электрического заряда --- Примеры решения задач по теме «Закон Кулона» --- Близкодействие и действие на расстоянии --- Электрическое поле --- Напряжённость электрического поля. Силовые линии --- Поле точечного заряда и заряженного шара. Принцип суперпозиции полей --- Примеры решения задач по теме «Напряжённость электрического поля. Принцип суперпозиции полей» --- Проводники в электростатическом поле --- Диэлектрики в электростатическом поле --- Потенциальная энергия заряженного тела в однородном электростатическом поле --- Потенциал электростатического поля и разность потенциалов --- Связь между напряжённостью электростатического поля и разностью потенциалов. Эквипотенциальные поверхности --- Примеры решения задач по теме «Потенциальная энергия электростатического поля. Разность потенциалов» --- Электроёмкость. Единицы электроёмкости. Конденсатор --- Энергия заряженного конденсатора. Применение конденсаторов --- Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора»



По следам "английских ученых"

  • Можно ли вскипятить воду звуком?

    Если у вас в доме вдруг пропало электричество, не работает электрический чайник, плита, и кончились спички, но зато вопреки всему во всю силу гремит музыка, давайте зададимся вопросом: можно ли вскипятить воду, используя звук? Насколько это реально?

Устали? - Отдохнем!




Новости


Азбука физики
Азбука физики
Викторины
Викторины

Научные игрушки
Научные игрушки
Загадки прошлого
Викторины
Простые опыты
Простые опыты
Парадоксы
Парадоксы
Это интересно
Интересная физика
История техники
История техники
Физика детям
Физика для детей
Библиотека
Библиотека
Знаете ли вы
Знаете ли вы
История физики
История физики
Любознательным
Любознательным
Мысли вслух
Мысли вслух
Этюды об ученых
Ученые-физики
Задачи Г. Остера
Задачи Григория Остера
Умные книжки
Умные книжки по физике
Есть вопросик
Ответы на попросы по физике
Его величество
Все о человеке
Музеи науки
Научные музеи
Достижения
Новости науки и техники

Контакты



Выпускникам

Как сдавать экзамены?
Тактика тестирования
Знаешь ли ты себя?
На урок

Класс!ная физика для любознательных

Презентации и диафильмы по физике

My-shop.ru - Интернет-магазин товаров для образования



Интернет-магазин Лабиринт