Вверх
Сила тяжести и сила всемирного тяготения
Касс!ная физика на Rutube

Фильмы об ученых
Фильмы об ученых

Научные игры
Научные игрушки

Азбука физики
Азбука физики

Викторины
Викторины

Парадоксы
Парадоксы

Простые опыты
Простые опыты

BHИMAHИE! Тeмы "ЦOP 7-9 клacc к уроку" ecть в фopмaтe PDF и SWF!
Возможный вариант просмотра SWF-файлов: скачать адобовский флэш-плейер flashplayer_32 скачать здесь. Положить его на рабочий стол компа (или закачать на флэшку и подключить ее к компу). Кликнуть по ссылке нужный ЦОР со страницы сайта, открыть скаченный файл. Приятного просмотра!

Сила тяжести и сила всемирного тяготения

«Физика - 10 класс»

Почему Луна движется вокруг Земли?
Что будет, если Луна остановится?
Почему планеты обращаются вокруг Солнца?

В главе 1 подробно говорилось о том, что земной шар сообщает всем телам у поверхности Земли одно и то же ускорение — ускорение свободного падения. Но если земной шар сообщает телу ускорение, то согласно второму закону Ньютона он действует на тело с некоторой силой. Силу, с которой Земля действует на тело, называют силой тяжести. Сначала найдём эту силу, а затем и рассмотрим силу всемирного тяготения.

Ускорение по модулю определяется из второго закона Ньютона:

В общем случае оно зависит от силы, действующей на тело, и его массы. Так как ускорение свободного падения не зависит от массы, то ясно, что сила тяжести должна быть пропорциональна массе:

= m         (3.1)

Физическая величина — ускорение свободного падения, оно постоянно для всех тел.

На основе формулы F = mg можно указать простой и практически удобный метод измерения масс тел путём сравнения массы данного тела с эталоном единицы массы. Отношение масс двух тел равно отношению сил тяжести, действующих на тела:

Это значит, что массы тел одинаковы, если одинаковы действующие на них силы тяжести.

На этом основано определение масс путём взвешивания на пружинных или рычажных весах. Добиваясь того, чтобы сила давления тела на чашку весов, равная силе тяжести, приложенной к телу, была уравновешена силой давления гирь на другую чашку весов, равной силе тяжести, приложенной к гирям, мы тем самым определяем массу тела.

Сила тяжести, действующая на данное тело вблизи Земли, может считаться постоянной лишь на определенной широте у поверхности Земли. Если тело поднять или перенести в место с другой широтой, то ускорение свободного падения, а следовательно, и сила тяжести изменятся.


Сила всемирного тяготения.




Ньютон был первым, кто строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила всемирного тяготения, действующая между любыми телами Вселенной.

Ньютон пришёл к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы (рис. 3.1) с определённой скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался бы вокруг неё подобно тому, как планеты описывают в небесном пространстве свои орбиты.

Итак, по мнению Ньютона, движение Луны вокруг Земли или движение планет вокруг Солнца — это тоже свободное падение, которое длится, не прекращаясь, миллиарды лет. Причиной такого падения (идёт ли речь действительно о падении обычного камня на Землю или о движении планет по их орбитам) служит сила тяготения.

Земля сообщает Луне ускорение, которое не зависит от массы Луны и, как показали расчёты, в (60)2 раз меньше ускорения тел на Земле. Расстояние до Луны в 60 раз больше радиуса Земли. Отсюда Ньютон сделал вывод, что ускорение и соответственно сила притяжения тел к Земле обратно пропорциональны квадрату расстояния до центра Земли:

Также Ньютон установил, что Солнце сообщает всем планетам ускорение, обратно пропорциональное квадрату расстояния от планет до Солнца.


Закон всемирного тяготения.

Можно лишь догадываться о волнении, охватившем Ньютона, когда он пришёл к великому результату: одна и та же причина вызывает явления поразительно широкого диапазона — от падения брошенного камня на землю до движения огромных космических тел.

Ньютон нашёл эту причину и смог точно выразить её в виде одной формулы — закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:

«Тяготение существует ко всем телам вообще и пропорционально массе каждого из них... все планеты тяготеют друг к другу...» И. Ньютон

Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причём эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Закон всемирного тяготения:

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной.

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при массах m1 = m2 = 1 кг и расстоянии r = 1 м получаем G = F (численно).

Нужно иметь в виду, что закон всемирного тяготения (3.4) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.2, а).

Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками, рис. 3.2, б), также взаимодействуют с силой, определяемой формулой (3.4). В этом случае r — расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. Такие силы называются центральными. Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R ≈ 6400 км).

Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (3.4), имея в виду, что r есть расстояние от данного тела до центра Земли.

Брошенный на Землю камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадёт наконец на Землю. Если его бросить с большей скоростью, то он упадёт дальше». И. Ньютон

Определение гравитационной постоянной.


Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определённое наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения даёт новую связь между известными величинами с определёнными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ: Н • м2/кг2 = м3/(кг • с2).

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами.

Оцените силу гравитационного взаимодействия между вами и вашим соседом по парте. Считайте, что вы нахояитесь на расстоянии r = 0,5 м.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы — самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10-9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 3.3. На тонкой упругой нити подвешено лёгкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжёлых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить до тех пор, пока возникающая сила упругости не станет равна гравитационной силе. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.

Из этих опытов было получено следующее значение для гравитационной постоянной:

G = 6,67 • 10-11 Н • м2/кг2.

Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большого значения. Например, Земля и Луна притягиваются друг к другу с силой F ≈ 2 • 1020 Н.


Зависимость ускорения свободного падения тел от географической широты.


Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до её поверхности у полюсов меньше, чем на экваторе. Другой причиной является вращение Земли.


Равенство инертной и гравитационной масс.


Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие её на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

В теории Ньютона масса является источником поля тяготения. Мы находимся в поле тяготения Земли. В то же время мы также являемся источниками поля тяготения, но в силу того, что наша масса существенно меньше массы Земли, наше поле намного слабее и окружающие предметы на него не реагируют.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определённое ускорение под действием данной силы. Это инертная масса mи.

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Масса, определяющая способность тел притягиваться друг к другу, — гравитационная масса mr.

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что

mи = mr.         (3.5)

Равенство (3.5) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.


Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский




Динамика - Физика, учебник для 10 класса - Класс!ная физика

Основное утверждение механики --- Сила --- Инертность тела. Масса. Единица массы --- Первый закон Ньютона --- Второй закон Ньютона --- Принцип суперпозиции сил --- Примеры решения задач по теме «Второй закон Ньютона» --- Третий закон Ньютона --- Геоцентрическая система отсчёта --- Принцип относительности Галилея. Инвариантные и относительные величины --- Силы в природе --- Сила тяжести и сила всемирного тяготения --- Сила тяжести на других планетах --- Примеры решения задач по теме «Закон всемирного тяготения» --- Первая космическая скорость --- Примеры решения задач по теме «Первая космическая скорость» --- Вес. Невесомость --- Деформация и силы упругости. Закон Гука --- Примеры решения задач по теме «Силы упругости. Закон Гука» --- Силы трения --- Примеры решения задач по теме «Силы трения» --- Примеры решения задач по теме «Силы трения» (продолжение) ---



По следам "английских ученых"

  • Можно ли вскипятить воду звуком?

    Если у вас в доме вдруг пропало электричество, не работает электрический чайник, плита, и кончились спички, но зато вопреки всему во всю силу гремит музыка, давайте зададимся вопросом: можно ли вскипятить воду, используя звук? Насколько это реально?
Новости

Задачи Г. Остера
Задачи Григория Остера

Это интересно
Интересная физика

История техники
История техники

Физика детям
Физика для детей

Знаете ли вы
Знаете ли вы

История физики
История физики

Вопросы-загадки
Вопросы-загадки



Этюды об ученых
Ученые-физики

Есть вопросик
Ответы на попросы по физике

Его величество
Все о человеке

Мысли вслух
Мысли вслух

Экзамены?
Тестирование?
Знаешь себя?
На урок

Класс!ная физика для любознательных


ЦОР и ресурсы по физике

Книги  по физике

Забавные коты глазами художников