Вверх
Примеры решения задач по теме «Равновесие твёрдых тел»
Касс!ная физика на Youtube

Занимательные фишки - 7 класс

Конспекты - 7 класс

Занимательные фишки - 8 класс

Занимательные фишки - 9 класс

Конспекты, учебники, видео - 10-11 класс
"Что кажется нам чудом, на самом деле таковым не является!" - Симон Стевин
Но, что будет, если кота Шрёдингера засунуть в бутылку Клейна и обмотать всё лентой Мёбиуса?

Викторины

Диафильмы по физике

Презентации по физике

Ребусы и  кроссворды

Примеры решения задач по теме «Равновесие твёрдых тел»

«Физика - 10 класс»

При решении задач статики надо использовать условия равновесия (7.9). Причём от векторного уравнения для суммы сил следует перейти к проекциям сил на координатные оси. Иногда удобнее решать задачу, используя геометрическое правило сложения векторов. При равновесии многоугольник сил должен быть замкнутым, так как сумма сил равна нулю (подобный пример будет рассмотрен ниже).

При записи для правила моментов сил надо подумать, как выбрать ось, чтобы плечи сил определялись наиболее просто и в сумме моментов сил содержалось меньше слагаемых.

В задачах часто рассматриваются стержни, которые скрепляются шарнирно. При этом имеется в виду, что трение в шарнире отсутствует.


Задача 1.


Груз висит на двух тросах (рис. 7.5, а). Угол АСВ равен 120°. Сила тяжести, действующая на груз, равна 600 Н. Определите силы натяжения тросов АС и СВ.


Р е ш е н и е.


Силы натяжения тросов обозначим через 1 и 2. Эти силы направлены вдоль тросов от точки С (рис. 7.5, б). Кроме этих сил, на точку С действует сила тяжести m. Точка С находится в равновесии. Следовательно, сумма сил, действующих на неё, равна нулю:

1 + 2 + m = 0.

Оси координат выберем так, как показано на рисунке (7.5, в). При равновесии сумма проекций всех сил на оси координат равна нулю:

T1x + T + mgх = 0,     Т + Т + mgy = 0,

или

T1 - T1cos60° = 0,     T1cos30° - mg = 0.

Отсюда

Т2 = T1cos60° ≈ 345 Н.




Задача 2.


Дверь люка АО, которая может поворачиваться в шарнире О без трения, удерживается в горизонтальном положении верёвкой (рис. 7.6, а). Определите натяжение верёвки и силу реакции шарнира, если верёвка образует с дверью угол α = 60°. Дверь однородна и на неё действует сила тяжести 300 Н.

>

Р е ш е н и е.


На дверь люка действуют три силы (рис. 7.6, б): сила тяжести m, приложенная к середине двери в точке D, сила натяжения со стороны верёвки и сила реакции со стороны шарнира.

Выберем оси координат так, как показано на рисунке (7.6, б). Поскольку дверь находится в равновесии, то сумма моментов всех сил относительно, например, шарнира равна нулю: М1 + М + М2 = 0.

Здесь M1, М, М2 — моменты сил , m и . Найдём плечи этих сил, обозначив |АО| = l. Тогда OD = l/2 — плечо силы m, СО = AOsinα = lsinα — плечо силы . Плечо силы равно нулю, так как она приложена в шарнире.

Значит, М1 = -Tlsinα, М2 = 0.

Теперь запишем правило моментов сил, учитывая знаки этих моментов:

Отсюда находим силу натяжения верёвки:

Для нахождения силы реакции шарнира воспользуемся первым условием равновесия:

m + + =0.

Запишем это векторное уравнение в проекциях на координатные оси:

—Тх + Nx = 0, Ту + Ny - mg = 0,

или Nх = Тcosα,

Отсюда Nх = 86,5 H;     Nхy = 150 H.

Модуль силы N равен

Угол, который образует сила с координатной осью OY:


Задача 3.


Лестница прислонена к стене. При каком минимальном угле наклона к полу она не будет падать? Коэффициенты трения между лестницей и стеной и между лестницей и полом соответственно равны μ1 и μ2.


Р е ш е н и е.


На лестницу действуют следующие силы (рис. 7.7): тяжести m, нормальной реакции со стороны стены 1 и пола 2, трения тр1 и тр2.

Первое условие равновесия для лестницы имеет вид

m + 1 + 2 + тр1 + тр2 = 0.         (1)

Для записи правила моментов выберем ось вращения, проходящую через точку С, и запишем:

Из последнего уравнения следует:

Выразим силы N1 и Fтp1 через силу тяжести. Для этого запишем уравнение (1) в проекциях на оси координат:

на ось X: N1 - F.rp2 = О,
на ось Y: Fтp1 + N2 - mg = 0.

По условию задачи требуется найти минимальное значение угла amin, поэтому берём максимальные значения сил трения, т. е. Fтp1 = μ1N1, и Fтp2 = μ2N2

Тогда

Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский




Статика - Физика, учебник для 10 класса - Класс!ная физика

Равновесие тел --- Примеры решения задач по теме «Равновесие твёрдых тел»



По следам "английских ученых"

  • Можно ли вскипятить воду звуком?

    Если у вас в доме вдруг пропало электричество, не работает электрический чайник, плита, и кончились спички, но зато вопреки всему во всю силу гремит музыка, давайте зададимся вопросом: можно ли вскипятить воду, используя звук? Насколько это реально?

Устали? - Отдохнем!




Новости


Азбука физики
Азбука физики
Викторины
Викторины

Научные игрушки
Научные игрушки
Загадки прошлого
Викторины
Простые опыты
Простые опыты
Парадоксы
Парадоксы
Это интересно
Интересная физика
История техники
История техники
Физика детям
Физика для детей
Библиотека
Библиотека
Знаете ли вы
Знаете ли вы
История физики
История физики
Любознательным
Любознательным
Мысли вслух
Мысли вслух
Этюды об ученых
Ученые-физики
Задачи Г. Остера
Задачи Григория Остера
Умные книжки
Умные книжки по физике
Есть вопросик
Ответы на попросы по физике
Его величество
Все о человеке
Музеи науки
Научные музеи
Достижения
Новости науки и техники

Контакты



Выпускникам

Как сдавать экзамены?
Тактика тестирования
Знаешь ли ты себя?
На урок

Класс!ная физика для любознательных

Презентации и диафильмы по физике

My-shop.ru - Интернет-магазин товаров для образования



Интернет-магазин Лабиринт