Класс!ная физика



Изобретения Дедала (часть4)

15.01.2017

Предыдущая страница (часть3) - смотри здесь



Начальственная пирамида вверх ногами

Похоже, что энергетический кризис следует рассматривать как сигнал о необходимости перехода к стабильной экономике с нулевым приростом производства. До сих пор, несмотря на различные усовершенствования технологии, потребление энергии на протяжении уже более ста лет возрастает ежегодно на 4,5%. Эта цифра очень близка к приводимому Паркинсоном проценту ежегодного прироста бюрократического аппарата вне зависимости от объема выполняемой этим аппаратом работы (если таковая вообще выполняется). Дедал считает, что промышленное развитие также подчиняется закону Паркинсона и происходит лишь для удовлетворения абсурдных амбиций предпринимателей. Если, к примеру, на каждого руководящего администратора приходится по четыре подчиненных и каждый сотрудник раз в пять лет, получая повышение, переходит на следующий, более высокий уровень служебной иерархии, то число сотрудников фирмы должно увеличиваться на 32% в год. Чтобы быть ближе к реальности, учтем распределение людей по способностям. Так, по Паркинсону, 20% людей выпивают 80% пива и 20% сотрудников делают 80% всей работы. Усерднее всего человек работает, если он имеет примерно 50%-ный шанс на повышение по службе; если же шанс больше или меньше, то его усердие падает. Тогда, если экономика движется вперед честолюбием 20% работников, расширение производства должно давать им половинный шанс на повышение в течение пяти лет. Иначе говоря, 5,4% сотрудников ежегодно получают повышение, что очень близко как к результатам Паркинсона, так и к росту потребления энергии, которое вполне может считаться надежным показателем экономического роста. Заметим, что население в промышленно развитых странах растет за последние столетия всего на 1% в год, поэтому 3,5% фирм должно ежегодно терпеть банкротство, чтобы обеспечить остальной приток новых сотрудников. Это тоже согласуется с действительностью.

Но тогда, по мнению Дедала, переход к стабильной экономике может быть произведен просто за счет изменения бюрократической структуры. Если на каждого начальника будет приходиться только по два подчиненных, то рост аппарата сократится до 2% в год. Если же на каждого начальника будет приходиться один подчиненный, так что на каждом уровне бюрократической иерархии будет одинаковое число сотрудников, то экономический рост прекратится. Каждый раунд повышений по службе поднимет всех на одну ступень вверх; администраторы самого верхнего уровня уйдут в отставку, а на самый нижний наберут новых работников. Все амбиции будут удовлетворены, а фирме не понадобится расширяться. Конечно, быть одним из нескольких сотен директоров компании не так лестно, как занимать этот пост в одиночку.

Но можно пойти еще дальше и вообще перевернуть начальственную пирамиду. На рабочего, стоящего у полностью автоматизированного станка, может приходиться четыре инженера, разрабатывающих программы управления, и шестнадцать чиновников в отделе сбыта готовой продукции. При такой «инверсной заселенности» продвижение по службе будет вызывать сокращение производства. Дедал приходит к выводу, что сторонники «экологической революции» абсолютно неправы. Остановить самоубийственный экономический рост может не возвращение к прежним методам производства, а наоборот, скорейшее развитие сверхсовременной автоматизации.

New Scientist, December 20, 1973


Из записной книжки Дедала

Рассмотрим иерархию, в которой на каждом уровне в t раз больше членов, чем на последующем. Возьмем, например, уровень l с N членами. Вышележащий уровень l+1 содержит N/t членов, а нижележащий уровень l-1 содержит Nt членов.

Пусть повышение получает доля p членов уровня. На уровне l остается N(1-p) обойденных сотрудников, к которым присоединяются Ntp новичков с нижнего уровня. Число членов на этом уровне составляет теперь N[tp+(1-р)], т. е. увеличивается в F = [tp+(1-p) = p(t+1)] раз.

Если повышения происходят раз в пять лет, то коэффициент ежегодного роста равен F1/5 или, в процентах, I = 100(F1/5 - 1)% = 100[(p(t-1)+1)1/5–1].

Примеры. Если t = 4, т. е. на каждого начальника приходится четыре подчиненных, и каждый обязательно получает повышение раз в пять лет (р = 1), то I = 32% в год. Если кандидатами на повышение являются только 20% активно работающих сотрудников, но за пять лет повышение получает лишь половина из них, то р = 0,1 и I = 5,4% в год, что хорошо согласуется с многолетними наблюдениями. Если же t = 2, то при р = 0,1 мы получим I = 2% в год. При t = 1 ежегодный прирост равен нулю. А в перевернутой пирамиде с t = 0,25 I = -1,5%; иначе говоря, производство сокращается на 1,5 % в год. Дедал видит в этом подлинный путь к прогрессу.


Комментарий Дедала

Какое щемящее чувство вызывают сегодня эти рассуждения. Мы ухитрились дойти до экономического застоя старым испытанным способом — закрытием предприятий. Может быть, мои вычисления пригодятся японцам.


Энергия с горных вершин

Недавно изобретенный Дедалом тепловой планер  — летательный аппарат, использующий разность температур между верхними и нижними слоями атмосферы, — нетрудно преобразовать в более крупномасштабный проект. Значительная доля электрической энергии в современном обществе расходуется на кондиционирование воздуха. Поэтому большую ценность представляли бы способы непосредственного использования холода из верхних слоев атмосферы. Можно было бы, например, создать аэростат, поднимающийся вверх за счет подъемной силы газообразного аммиака и опускающийся на землю с грузом жидкого аммиака при -33°C. Более практичной, однако, была бы непрерывно действующая система. Поскольку температура воздуха падает с высотой на 6,5 градусов на километр, аэростат с теплообменником, поднятый на высоту 1–2 км и соединенный трубопроводами с поверхностью Земли, мог бы снабжать холодом дом или даже небольшой поселок.

Главная сложность использования сравнительно небольшой разности температур заключается в обеспечении хорошего теплообмена. Очень много проектов посвящено использованию разности температур между глубинными и поверхностными водами океана ([22], с. 226–229). Прим. ред.

Некоторые сложности возникнут только из-за ветра (потребуются дополнительные удерживающие растяжки); вряд ли удастся также создать такой аэростат действительно больших размеров.

Поэтому для широкомасштабного использования существующих в атмосфере температурных градиентов Дедал разрабатывает план извлечения энергии с заснеженных горных вершин. Многообещающей в этом отношении является гора Кения — пятитысячник в экваториальной Африке; температура на ее вершине опускается до -18°C. Здесь можно было бы установить большой теплообменник и по склону горы проложить к нему трубы. По одной трубе газ поступает в теплообменник, где сжижается при низкой температуре; образовавшаяся жидкость стекает по второй трубе к подножию горы, где установлен второй теплообменник. Здесь газ, испаряясь, вращает турбогенератор; часть газа идет также в систему центрального охлаждения. Отработанный газ идет опять наверх и сжижается. Такая установка может снабжать холодом и энергией целый тропический город. У верхнего же теплообменника смогут обогреться дерзкие покорители горной вершины.

Подобрать подходящее рабочее тело такой системы непросто; прежде всего оно должно иметь низкую молекулярную массу, иначе давление высокого столба газа приведет к ее конденсации в нижней части. Подходящим кажется аммиак (М = 17), однако для того, чтобы он конденсировался при -18°C, давление должно составлять 2,2 атм — в таком случае понадобятся толстостенные и тяжелые трубы. Больше всего подходит метиламин. На вершине Кении он сконденсируется при 0,6 атм, что очень близко к атмосферному давлению на этой высоте. Кроме того, молекулярная масса метиламина близка к эффективной молекулярной массе воздуха (31 и 29 соответственно), так что изменение плотности метиламина с высотой точно следует изменению плотности атмосферы. Поэтому можно использовать легкие трубы. Экономически выгодными могут оказаться и менее крупномасштабные проекты — например, с вершины горы Бен-Невис снабжать энергией Форт-Уильям.

New Scientist, February 17, 1972


Из записной книжки Дедала

Чтобы изображенная на рисунке установка работала, конденсация должна происходить на вершине при рhТh, а кипение у подножия — при р0Т0. Температуры на вершине и у подножия определяются атмосферными условиями, и мы не можем их изменить, тогда как величины давления зависят от рабочего тела и конструкции установки. Чем тяжелее газ, тем выше давление у подножия, тем выше точка кипения — и тем хуже обстоят наши дела. В предельном случае пары едва конденсируются наверху и жидкость еле-еле закипает внизу. Тогда в любой точке столба давление пара равно давлению насыщающих паров жидкости при данной температуре. Какую молекулярную массу должно иметь вещество, чтобы это условие выполнялось? В приближении идеального газа плотность пара равна ρ = pm/RT, где р — давление, а m — молярная масса. Рассмотрим короткий участок трубы с перепадом высот δh, заполненный паром. Если давление в верхнем сеченин равно р, то давление в нижнем сечении равно р = δp, где δр определяется из формулы гидростатического давления δp = ρgδh = (pm/RT)gδh.

Итак, в предельном случае давление, создаваемое парами на любой высоте, равно давлению насыщающих паров (ДНП) жидкости на данной высоте. Поэтому, если в верхнем сечении ДНП жидкости при температуре Т равно р, то в нижнем сеченин, где температура равна Т+δТ, ДНП должно быть равно р+δр. Изменение ДНП жидкости с температурой хорошо описывается уравнением Клапейрона — Клаузиуса: δр = λрδТ/(РТ2), где λ — скрытая теплота испарения. Приравнивая между собой два выражения для δр, получим λpδT/(RT2) = (pm/RT)gδh, откуда m = (δТ/δр) λ (Tg) кг/моль.

Большинство жидкостей подчиняется эмпирическому правилу Трутона, согласно которому λ/Т равно приближенно 92 Дж/(моль•К), где Т — температура кипения (как всюду в нашей равновесной среде). Подставляя сюда температурный градиент стандартной модели атмосферы δT/δh = 6,5×10-3 К/м и g = 9,81 м/с2, получим m = 6,5 × 10-3 × 92/9,81 = 0,061 кг/моль = 61 г/моль.

Таким образом, нам может подойти только жидкость с молекулярной массой меньше 61, если только какие-то факторы, не учтенные в этих вычислениях, не будут играть нам на руку.

Попробуем проверить наши выводы для некоторых рабочих тел. Во-первых, «масштаб высоты» (соответствующий изменению давления в е раз) для идеального газа, если считать температуру постоянной, определяется соотношением Н = RT/gm. Тогда:

а. Аммиак (М=17, m = 0,017, Н = 13 600 м). На вершине горы Кения при -18°C аммиак конденсируется при давлении 2,2 атм; тогда у подножия горы, т. е. на 5000 м ниже, его давление р = 2,2 ехр(5000/13 600) = 3,2 атм. При таком давлении аммиак кипит при температуре -7°C. Следовательно, стекающий вниз жидкий аммиак будет кипеть в условиях тропической жары. Но, к сожалению, для этого требуется слишком высокое давление.

б. Метиламин (M = 31, m = 0,031 и Н = 7500 м). На вершине горы Кения при -18°C метиламин конденсируется при давлении 0,6 атм, а у подножия горы, т. е. на 5000 м ниже, давление в трубе составит р = 0,6 ехр(5000/7500) = 1,2 атм; при этом давлении метиламин кипит при температуре -5°C. Далее, поскольку давление воздуха на вершине горы равно 0,54 атм, а у подножия — 1 атм, давление внутри трубы на всем ее протяжении будет близко к наружному; поэтому трубопровод получится достаточно изящным и легким. По-видимому, метиламин вполне подходит для нашей цели.


Муравьи и алгоритмы

Традиционные методы расчета инженерных сооружений — сначала вычисляются максимальные нагрузки, которые будет испытывать конструкция, а затем вводится дополнительный запас прочности — оказываются слишком трудоемкими и дорогостоящими. Дедал пытается найти способ устранить любой элемент случайности и избежать опасности, таящейся в скрытых дефектах конструкции путем измерения реальных нагрузок и соответствующей подгонки сооружения. В этой связи Дедал вспоминает о загадочных повадках термитов. Эти прожорливые точильщики не грызут дерево с поверхности, а проделывают внутри сеть сложнейших лабиринтов, так что оставшаяся оболочка рассыпается в прах при малейшем прикосновении. Дедал приходит к заключению, что эти хитроумные существа должны каким-то образом чувствовать внутренние напряжения в дереве, которое они грызут, и знают, когда дальнейшее разрушение может привести к катастрофическому обвалу.

Способность термитов «чувствовать» внутренние напряжения в дереве скорее всего объясняется просто тем, что поверхностная и объемная прочность дерева различна. — Прим. ред.

Известно, что термиты способны переваривать дерево благодаря особой микрофлоре в их желудке (Tricho-nympha). Дедал предлагает заменить эту микрофлору другими микроорганизмами. Как известно, в последнее время появилось множество микроорганизмов, которые питаются новыми материалами, созданными человеком. Обнаружены микробы, поедающие пластмассы; грибки, живущие на стекле или алюминии, и т. п. — их-то и следует, считает Дедал, поселить в желудках термитов. Тогда, подвергнув фюзеляж самолета или какую-либо другую важную конструкцию действию максимальных предполагаемых нагрузок, следует напустить туда термитов. Термиты выберут весь излишек металла, оставив после себя губчатую структуру, обеспечивающую заданную прочность при минимальном весе. Благодаря своей способности чувствовать внутренние напряжения в материале термиты смогут «учесть» все конструктивные и производственные дефекты конструкции. Единственная сложность будет, по-видимому, состоять в том, чтобы не дать насекомым разбежаться после того, как они выполнят свою задачу, ибо трудно даже представить себе, какие разрушения они способны произвести, вырвавшись на волю. Но при действии тепла микрофлора в желудке термитов уничтожается раньше, чем они сами, и насекомые погибают от несварения желудка. Дедал надеется вывести нетеплостойкие виды микробов, разрушающих металл, тогда термитов можно будет обезвредить тепловой обработкой.

New Scientist, July 14, 1966


Дедал не перестает поражаться тонкости инстинктов насекомых. Жук-трубковерт делает на листе точнейший криволинейный разрез, паук плетет великолепное кружево паутины, термиты строят свои архитектурные шедевры, — все это примеры проявления слепого инстинкта. Это побудило Дедала задуматься над вопиющим несоответствием, наблюдаемым в современной технике: в то время как в области микроэлектроники достигнут колоссальный прогресс, механические конструкции по-прежнему остаются довольно неуклюжими. Дедал надеется, что подобное положение дел удастся исправить, обратившись за помощью к насекомым. Он вспоминает, что пауки, подвергнутые действию радиации, нередко начинают плести очень странные паутины. Должно быть, облучение изменяет программу, заложенную в их инстинктах; поэтому Дедал облучает яйца муравьев, пауков, ос и т. п. и наблюдает за инстинктами рождающихся мутантов. Большинство из них, разумеется, нежизнеспособны, однако некоторые могут оказаться полезными с практической точки зрения. (В будущем методы генной инженерии, вероятно, позволят целенаправленно программировать инстинкты.) Прежде всего Дедал стремится развить у несекомых способность соединять электрические проводники — тогда муравьев можно будет использовать для монтажа интегральных микросхем; сейчас этим заняты тысячи людей, вооруженных микроскопами и микроманипуляторами. Более трудоемкую работу будут выполнять целые бригады насекомых. Строительные инстинкты насекомых по существу очень просты: они описываются алгоритмами, содержащими не более 4–5 отдельных команд. Было бы очень интересно исследовать алгоритмы, позволяющие насекомым осуществлять монтажно-сборочные операции.

Изготовление сложного прибора, например телефонного аппарата, не удастся описать одним простым алгоритмом. Каждую деталь или отдельный узел придется поручить специализированным бригадам насекомых, наделенных соответствующими инстинктами; другие бригады будут собирать эти узлы в единое целое. Однако по нашим нынешним меркам полученная таким образом продукция будет выглядеть весьма странно. Во-первых, никакие две конструкции не будут одинаковыми, они не будут иметь ни строгих геометрических линий, ни точных размеров. В них удивительным образом будут сочетаться изысканность и уродство форм и очертаний. И тем не менее сам принцип их изготовления гарантирует высокую надежность. Если же возникнет какая-то неполадка, то прибор достаточно будет вернуть на соответствующий участок конвейера, где трудолюбивые насекомые сами ее исправят.

New Scientist, February 26, 1981


Комментарий Дедала

Термиты известны своей способностью подтачивать деревянные сооружения изнутри, вследствие чего те разрушаются при малейшем прикосновении. Рассказывают, например, как в Индии колышки на поле для игры в крокет были по недосмотру оставлены на ночь. На другой день во время матча игрок одним ударом прошел все воротца, которые буквально разлетелись в пыль. Этот невероятный рекорд стал возможен благодаря термитам, под покровом ночи совершившим коварную «диверсию».

В своей лекции памяти Джейкоба Броновского, прочитанной в 1979 г. в Массачусетсом технологическом институте, Филип Моррисон привел пример строительного алгоритма термитов. Из измельченного дерева и собственной слюны термиты вырабатывают липкую смесь, напоминающую папье-маше. Крупинки этой смеси склеиваются друг с другом и затвердевают. При постройке термитника — очень сложной конструкции, достигающей шестиметровой высоты, — каждое из насекомых слепо руководствуется следующим алгоритмом:

1. Сделать столбик из крупинок.

2. Когда столбик достиг определенной высоты, посмотреть, нет ли поблизости более высокого столбика, — если есть, то оставить свой столбик и продолжать работу на более высоком.

3. Когда столбик достиг еще большего размера, посмотреть, нет ли по соседству столбика, который можно соединить со своим. Если нет, оставить свой столбик и искать другой подходящий столбик рядом.

4. Если по соседству имеется подходящий столбик, соединить его со своим перемычкой. Далее продолжать все сначала.

Руководствуясь этим алгоритмом, тысячи неорганизованных насекомых строят в результате сложный многоярусный лабиринт. У них нет ни планов, ни чертежей; нет и двух одинаковых термитников, однако все термитники служат прекрасными домами для этих насекомых. По-виднмому, алгоритм должен содержать дополнительные инструкции, предусматривающие, скажем, сводчатую форму сооружения или его ориентацию (термитники нередко вытянуты с севера на юг), но даже такой алгоритм неизмеримо проще самого примитивного эскиза. Разработка конструкций, создаваемых по подобным алгоритмам, могла бы стать одним из направлений в архитектуре.

С разрешения редакции New Scientist.


Дома на воде

Долгая история архитектурных поисков и нерационального городского планирования наводит Дедала на мысль, что дома следует делать подвижными, чтобы в случае перепланировки не нужно было разрушать старые здания. Для перемещения домов удобнее всего было бы использовать принцип воздушной подушки, но, поскольку давление, оказываемое зданиями на опорную поверхность, составляет 0,02–2 атм, воздушная подушка вряд ли обеспечит требуемую подъемную силу. К тому же передвижение зданий сопровождалось бы невообразимым шумом. Поэтому Дедал намеревается использовать вместо воздуха воду, плотность которой в 1000 раз выше. Платформа на водяной подушке могла бы создавать значительную подъемную силу при относительно небольшом расходе воды. К сожалению, при этом вода затопит всю улицу, если только каким-то образом не отводить поток. Дедал предлагает окружить платформу водоотсасывающим кольцом, собирающим воду и возвращающим ее в систему. Дедал проектирует здания, оснащенные цистернами, насосами и всем необходимым для того, чтобы в считанные минуты превратить их в самоходные сооружения. Такой системой можно оснастить и многие существующие здания, возведенные на неглубоких или «плавающих» фундаментах.

Громко хлюпая, эти урбанистические суперводомерки будут скользить с места на место, подчиняясь прихотям архитектурной моды: высотный дом уступит место многорядному виадуку, а у подножия гигантов будут копошиться коттеджи и павильончики. Заводы будут ездить по стране в поисках квалифицированных рабочих или правительственных субсидий; пустеющие многоэтажные офисы приползут в центр Лондона, где спрос на них огромен, а старые конторы со своим персоналом покинут насиженные места, уступая требованиям комиссии по перепланировке. Трущобы гетто и загородные виллы будут располагаться обособленно или вперемежку, сообразуясь с текущей правительственной политикой (если же их просто оставить в покое, то со временем они естественным путем придут к равновесию). Проектировщики городов смогут не только учиться на своих ошибках, но и исправлять их. Только составители городских карт и работники коммунального хозяйства, наверное, проклянут новую Утопию.

New Scientist, February 3, 1972.


Из записной книжки Дедала

Рассмотрим платформу радиусом r, под которой в радиальных направлениях прокачивается жидкость через зазор размером x. Общая площадь щели А=2πrx, так что секундный массовый расход жидкости равен m' = arρ = 2πrxvg.

Давление p, создаваемое в жидкости перед щелью, должно равняться потоку импульса через единицу площади щели, т. е. p = 2πrxv2ρ/2πrx = v2ρ.

Это давление одинаково всюду под платформой и действует на всю нижнюю ее поверхность. Тогда полная подъемная сила F равна произведению давления на площадь поверхности: F = πr2v2ρ. Ясно, что вода, плотность которой в тысячу раз больше, чем у воздуха, создает в тысячу раз большую подъемную силу. Принимая разумные размеры платформы на водяной подушке: r = 10 м, v = 10 м/с, ρ = 1000 кг/м3, находим: р= 102 × 1000 Н/м2 = 1 атм; F = π × 102 ×102 × 1000 = 3,1×107 Н.

Прекрасно!

Какая мощность потребуется для создания нужного потока жидкости? Окружив здание прочной эластичной «юбкой», мы можем уменьшить зазор между ним и землей до 1 мм. Тогда массовый расход воды составит m' = 2π × 10 × 10-3 × 10 × 1000 = 630 кг/с. Значит, мощность Р = 1/2m'v2 = 0,5×630×102 = 31 кВт = 40 л.с. Это не так уж много. Чем больше размер платформы, тем лучше, поскольку подъемная сила пропорциональна квадрату радиуса, а требуемая мощность — первой степени радиуса.


Комментарий Дедала

Разумность моей идеи настолько очевидна, что я не мог не беспокоиться за свой приоритет. Поэтому я не очень удивился, узнав, что другие организации «наступают на пятки» фирме КОШМАР. Шесть месяцев спустя (New Scientist, Aug. 17, 1972, p. 340) было опубликовано сообщение о том, что Национальная инженерная лаборатория в Ист-Килбриде использует платформы на водяной подушке для перемещения тяжелых грузов в доках. Патенты иа эти платформы принадлежат Национальной научно-исследовательской корпорации. (Интересно, не потеряли ли они силу из-за того, что я опубликовал свой проект раньше?) Предполагалось, что такие платформы будут в основном использоваться для точной установки тяжелых деталей при сборочных работах. Никто, однако, не додумался пока применять их для перемещения зданий.


Мерзиглас

Неизвестно, существуют ли ощущения (помимо боли), органически неприятные для человека, например, врожденным ли является отвращение, которое мы испытываем к запаху тухлых яиц или при виде паука? Не так давно, однако, создатели звуковоспроизводящей аппаратуры обнаружили эффект, неприятный для любого слуха. Некоторые транзисторные усилители создают так называемые переходные искажения (типа «ступенька»), при которых на синусоидальном сигнале (между положительным и отрицательным полупериодами) появляется «ступенька». На слух эти искажения воспринимаются очень болезненно, хотя коэффициент нелинейных искажений при этом невелик: ухо, привыкшее к естественным, почти синусоидальным звукам, плохо воспринимает столь необычный сигнал. Дедал советует вводить подобные искажения в голоса злодеев в радиоспектаклях, чтобы сделать их еще более отталкивающими; он видит в этом также средство для тайного саботажа назойливой рекламы или выступлений политических противников. Но можно пойти еще дальше и распространить этот принцип на световые колебания, также имеющие синусоидальную форму. В нелинейной оптике уже известно много материалов, оптические свойства которых изменяются под действием электрического поля (например, электромагнитного поля, т. е. света). Специалисты фирмы КОШМАР пытаются найти стекло, которое проводит электрический ток (и поэтому непрозрачно) в слабых полях, но становится изолятором (и приобретает прозрачность) в сильных полях. Такое стекло («мерзиглас») будет аккуратно «вырезать» из синусоиды участки с интенсивностью ниже пороговой, но в то же время пропускать пики без заметного ослабления. Световая волна, проходя через такое стекло, будет претерпевать сильнейшее искажение типа «ступенька».

Дедал не может предсказать, как будут выглядеть предметы сквозь мерзиглас фирмы КОШМАР, но предполагает, что они предстанут как бы в зыбком, неверном свете. Добавочные гармоники лишь слегка исказят цвета, но тем не менее придадут им тошнотворный оттенок. Дедал считает, что такие стекла найдут множество применений в светофорах, дорожных знаках, на выставках художников-авангардистов. Но главную пользу подобный материал принесет, вероятно, как способ лечения телевизионной мании. Экран из мерзигласа поможет многим безнадежным телеманьякам вернуться к нормальному образу жизни.

New Scientist, July 22, 1971


Из записной книжки Дедала

В старых усилителях на электронных лампах точность воспроизведения звука полностью определялась коэффициентом гармонических искажений: искажения не ощущались на слух, если этот коэффициент был ниже 0,2%. Однако многие транзисторные усилители звучат безобразно, несмотря на низкий коэффициент гармонических искажений. Многие известные специалисты винят в этом переходные искажения, которые возникают в усилителях класса Б, где усиление сигнала в положительный и отрицательный полупериоды производится разными транзисторами. Если характеристики этих транзисторов не абсолютно одинаковы, то на синусоидальном сигнале появляется ступенька. Воспринимаемое на слух искажение совершенно несоизмеримо с коэффициентом гармонических искажений (рис. 1).

Можно ли проделать аналогичный фокус со светом? Для начала естественно было бы воспользоваться полупроводниками, у которых обнаруживается эффект Овшинского. Эти полупроводники могут обладать самыми различными нелинейными характеристиками; для наших целей более всего подходит характеристика, изображенная на рис. 2.

Что произойдет с вектором электрического поля световой волны, если она пройдет через стекло с такой характеристикой? При малой величине электрического вектора (между точками A и B) рост напряженности поля вызывает увеличение силы тока через стекло. Стекло ведет себя как проводник с ненулевым сопротивлением и поэтому рассеивает или отражает свет подобно металлам: оно непрозрачно. Если же напряженность поля выше пороговой, то ток не возрастает. Теперь стекло ведет себя как изолятор и пропускает свет практически без потерь. В результате из синусоиды вырезаются участки вблизи нуля — появляются ступеньки. С формальной точки зрения это равносильно генерации высших гармоник, но глаз не спектрометр, и что он увидит, предсказать трудно.

Применение мерзигласа. На ум сразу приходят новые возможности психологического давления. Но можно найти и более простые применения. Как ни странно, усилитель с переходными искажениями звучит гораздо хуже прн малых уровнях громкости, чем при больших (при малых уровнях ступенька занимает значительную часть синусоиды). Аналогично свойства мерзигласа проявятся гораздо сильнее при слабом искусственном свете, чем в ярком свете дня. При достаточно низких интенсивностях света вектор электрического поля может вообще не достигать порогового значения и стекло останется полностью непрозрачным. Поэтому окна из мерзигласа могут заменить шторы. Яркий дневной свет пройдет в комнату не ослабляясь, а вечером слабое искусственное освещение не будет видно снаружи. Если даже свет частично и пройдет через стекло, то все равно никто не отважится подглядывать в окно из мерзигласа.


Остановись, мгновенье…

Дедал внес свой вклад в исследование биологических часов у животных и человека. Он отмечает, что время бежит незаметно, когда мы увлечены делом, и нескончаемо тянется, когда мы скучаем, так что на скучные дела приходится непропорционально большая часть нашего субъективно воспринимаемого времени. Очевидно, это неприятное явление обусловлено поступлением в кровь некоего вещества — своеобразного замедлителя времени. Дедал намерен выделить это вещество и освободить человечество от оков субъективного времени.

Вначале Дедал хотел изготовить что-то вроде церковной кружки для сбора пожертвований с анестезирующей иглой, чтобы незаметно собирать кровь у измученных прихожан после долгой нудной проповеди. Но вещества такого рода обычно содержатся в крови в столь незначительных количествах, что необходим более основательный подход. Поэтому Дедал привлек звезд авангардистского театра для осуществления грандиозного эксперимента, проводимого на пределе человеческих возможностей. План Дедала основан по преимуществу на его собственном опыте участия в научных конференциях. Согласно этому плану, собравшиеся должны прослушать цикл бесконечно длинных специальных докладов, прочитанных «приезжими знаменитостями», чья известность в научных кругах не позволит слушателям ни тихо дезертировать, ни открыто взбунтоваться. До 30% слов в этих «докладах» невозможно будет разобрать из-за иностранного акцента лекторов, а попытки последних оживить изложение чудовищно нудными анекдотами собственного сочинения усугубят ощущение скуки. Лекции будут сопровождаться показом расплывчатых и не относящихся к делу диапозитивов, при демонстрации которых слушателям будут напоминать (методом сублиминальной суггестии), что они забыли выключить утюг или закрыть воду. Неудобные кресла, высокая влажность и прочие неудобства не позволят публике заснуть. Такой комплексный подход должен привести к столь значительному растяжению субъективного времени у жертв эксперимента, что выделить содержащийся в крови химический замедлитель времени не составит труда. Как только удастся выяснить химический состав этого вещества, его можно будет синтезировать и выпускать в виде таблеток, которые помогут каждому по желанию продлить мгновения счастья и наслаждения, замедляя неумолимое течение времени. Страдания участников опыта будут вознаграждены!

New Scientist, July 18, 1968.


Комментарий Дедала

Когда мне ребенком беспечно жилось, время плелось.
Когда моей юности радость играла, время шагало.
Когда возмужали и дух мой, и тело, время летело.
Скоро пойму я на старости лет, что времени нет.
Боже, простишь ли раба своего ты тогда навсегда.

Это стихотворение Генри Твеллса, украшающее часы в северном приделе Честерского собора, по-видимому, подразумевает, что «замедлитель времени» присутствует в больших концентрациях в крови детей, но с возрастом его содержание в крови уменьшается. Это соображение может помочь нам в поисках. Кроме того, в учебных заведениях накоплен немалый опыт по созданию чрезвычайно скучной атмосферы. Поэтому, вероятно, можно будет ограничиться сбором крови на анализ у учащихся школ, славящихся особой строгостью порядков.


О пользе трещин

Традиционные методы обработки металла и других материалов требуют слишком много энергии. КПД токарного станка составляет меньше 0,1% — большая часть энергии переходит в тепло. По мнению Дедала, наиболее экономична с энергетической точки зрения резка стекла: стекольщик делает на стекле царапину и чисто обламывает его вдоль этой линии, затрачивая минимум энергии. При некотором навыке этот способ позволяет резать стекло не только по прямой линии, но и вырезать фигурные детали, отверстия. Трещины могут также распространяться в металлах (случается, что в шторм корабли разламываются пополам); особенно хрупки металлы при низких температурах. Поэтому специалисты фирмы КОШМАР разрабатывают сейчас технологию обработки материалов скалыванием, которая призвана заменить существующие способы механической обработки. Трещина распространяется в металле со скоростью несколько километров в секунду. Чтобы регулировать ее распространение с точностью до миллиметра, управляющая система должна обладать высоким быстродействием (осуществлять операции в течение микросекунд), что для современной электроники совсем несложно. Опытный образец обрабатывающего станка фирмы КОШМАР с помощью пьезострикционных возбудителей создает в заготовке внутреннее напряжение и инициирует распространение трещины с засечки, заранее сделанной в нужном месте заготовки. Дальнейшее распространение трещины направляется по сигналам от фотоэлектрических и тензометрических датчиков. Эти сигналы управляют работой пьезострикционных преобразователей, направляющих распространение трещины подобно тому, как руками можно направлять разрыв газеты по заданной линии. Все происходит в считанные миллисекунды: оператор не успевает моргнуть глазом, как заготовка трескается по заданному контуру и получается готовая деталь. В принципе такой станок позволяет получать детали любой конфигурации. Можно даже, к примеру, взять картину, нарисованную на большой керамической плите, и получить из нее головоломку-мозаику из сцепляющихся друг с другом элементов.

При изготовлении трехмерных деталей трещина должна распространяться в двумерной поверхности, но принцип остается прежним. Специалисты фирмы КОШМАР разрабатывают эту технологию для обработки материалов, достаточно хрупких уже при комнатной температуре, — скажем, для изготовления линз, не требующих последующей шлифовки. Когда эту технологию удастся довести до совершенства, ее можно будет применять также для металлов при низких температурах. Дедал надеется, что в конце концов он сможет наладить, например, изготовление за одну операцию блоков цилиндров из отливки. Помимо скорости и малой энергоемкости этот процесс привлекателен своей безотходностью. Болванки, вынутые из блока цилиндра, могут с успехом использоваться в качестве идеально притертых поршней.

До сих пор, однако, холодная хрупкость металлов доставляет только неприятности: это основная причина поломок машин в Арктике и Антарктике. Было бы заманчиво найти полезное применение этому эффекту для металла, как, например, это уже сделано для резины (резину с отслуживших автомобильных шин скалывают при температуре жидкого азота; дорогостоящий каркас используется повторно, а измельченная резина идет на переработку). — Прим. ред.

New Scientist, April 22, 1976.


Хрупкий разрыв — настоящее бедствие для инженерных конструкций. Небольшая трещинка в напряженном участке конструкции может распространиться и привести к катастрофическим последствиям. Дедал вспоминает, что большими умельцами по части технологии скалывания были наши предки, жившие в каменном веке. Они довели обработку кремня до высочайшего уровня, неосознанно используя то обстоятельство, что в поверхностном слое большинства кремней скорость звука ниже, чем внутри. Известно, что скорость распространения трещины определяется скоростью распространения звука в твердом теле. Поэтому трещина, направленная под углом к поверхности кремня, преломляется в поверхностном слое и выходит наружу. С кремня при этом скалывается аккуратная чешуйка. Давайте же, призывает Дедал, вернемся к технологии каменного века! Большинство способов поверхностной обработки металлов (науглероживание, азотирование) основано на диффузии атомов легирующих веществ в глубь поверхностного слоя. Дедал занят поисками такого способа поверхностной обработки, который обеспечил бы очень низкую поверхностную скорость звука, чтобы любая трещина, круто преломляясь, выходила обратно на поверхность. Обработанный таким способом металл произведет революцию в технике. Представьте себе подобную деталь на испытательном стенде (или даже в реальной конструкции). Когда напряжения в какой-нибудь точке окажутся выше предела прочности, образовавшаяся трещина не разрушит деталь, а выйдет на поверхность, аккуратно откалывая кусочек с производственным или конструкторским дефектом, в котором сконцентрировано опасное напряжение. В результате нагрузка в этом месте распределится более равномерно и опасность разрушения детали будет устранена. Нагрузки на такую деталь можно повышать до уровня, при котором начинается пластическое течение материала. Пластическое же течение часто играет на руку конструктору: неверно рассчитанная деталь «прирабатывается», упрочняется, а излишняя нагрузка равномерно распределяется между всеми элементами конструкции. Можно сказать, что металл Дедала будет обладать свойством самосовершенствования. В своих мечтах Дедал уже видит новую эру конструирования, когда конструкторы практически останутся без работы, а машины и механизмы будут собираться из кое-как сделанных деталей, которые в процессе работы будут принимать оптимальные формы. Автомобилисты же станут с тихой радостью смотреть на осколки и обломки, сыплющиеся из двигателя.

New Scientist, February 23, 1978.

Пример открытого Дедалом механизма «отвода» трещины в сторону. Под весом кирпичной кладки перемычка окна треснула. Из-за наличия в бетоне каких-то неоднородностей трещина повернула на 90° в сторону. В результате ее распространение стало невозможным и балка не лопнула пополам.


Комментарий Дедала

Один из самых удивительных примеров хрупкого разрыва связан со случаем, происшедшим с немецким пассажирским кораблем «Бисмарк». Построенный перед первой мировой войной, этот трансатлантический лайнер водоизмещением 57000 т (самый большой по тем временам) после окончания войны в счет репараций перешел к англичанам и был переименован в «Мажестик». Новые владельцы произвели реконструкцию судна, руководствуясь собственными представлениями о роскошном и комфортабельном лайнере. В 1928 г. на судне был установлен новый пассажирский лифт и во всех палубах были прорезаны прямоугольные окна под шахту лифта. Во время перехода через океан в углу одного из этих проемов образовалась трещина, которая дошла до борта корабля, прошла по обшивке, но, к счастью, остановилась, наткнувшись на иллюминатор. В «лучших» морских традициях эта история была замята. Ни пресса, ни три тысячи пассажиров так и не узнали, сколь близок был лайнер к катастрофе.


Транспорт с коллективной ответственностью

Выгода от использования автобусов повышенной вместимости имеет, к сожалению, неприятную сторону: долгое ожидание на остановках. Пассажирам было бы удобнее, если бы автобусы были поменьше, но ходили чаще, — но сколько тогда понадобится водителей! А не воспользоваться ли принципом универсама: пусть потребитель обслуживает себя сам. Дедал предлагает, чтобы пассажиры вели автобусы сами. В изобретенном им «транспорте с коллективной ответственностью» (ТКО) перед каждым сиденьем имеется рулевое колесо, рычаги и педали и каждый пассажир с помощью телевизионного экрана может наблюдать за дорогой. Всем пассажирам предлагается принимать посильное участие в управлении. Бортовая ЭВМ собирает сигналы со всех пультов. Она отбрасывает экстремальные значения, исходящие от слишком смелых или не слишком умелых водителей, и ведет автобус в соответствии с усредненным сигналом с остальных пультов. Поэтому индивидуальные отклонения (сигналы, поступающие с пультов лихача или пассажира, желающего подкатить прямо к своему порогу) не учитываются, а движением руководят коллективный опыт пассажиров и их знание маршрута.

Дедал полагает, что такой автобус будет двигаться весьма уверенно, что сделает его исключительно безопасным. Проблемы могут возникнуть в случае, когда ровно половина пассажиров захочет повернуть, скажем, направо, а другая — налево. Учитывая возможность подобной кризисной ситуации, ЭВМ следует обучить распознавать такие опасные бимодальные распределения голосов и самой делать выбор. Популярность игровых автоматов аттракционов-автодромов наводит Дедала на мысль, что пассажиры готовы будут даже платить за право управлять автобусом; это позволит обойтись без кондуктора. У каждого сиденья можно установить кассу и «взвешивать» сигнал, идущий от пульта, соответственно количеству опущенных монет. Тогда скорость, стиль управления и маршрут будут зависеть от тех, кто готов раскошелиться, — в точном соответствии с основным принципом капитализма: прав тот, кто больше платит. Из несогласия между пассажирами можно извлечь немалую выгоду. Барон Ротшильд, выступающий именно за такой принцип планирования научных исследований, будет в восторге.

New Scientist, November 29, 1973

Из записной книжки Дедала

а. Какими характеристиками будет обладать транспорт с коллективной ответственностью?

1. Повышенной точностью управления. Отношение снгнал/шум для суммы N сигналов улучшается в √N раз, так что автобус, управляемый 64 пассажирами, будет контролироваться в 8 раз точнее, чем управляемый одним шофером.

2. Статистическим усреднением по распределению контролируемых значений параметров. Типичное распределение сигналов от пультов может выглядеть как на рисунке.

ЭВМ отсекает крайние значения и усредняет остальные. Надежность результата окажется еще выше, поскольку все пассажиры узнают о выборе, сделанном ЭВМ, по тому, как ведет себя автобус. Это весьма напоминает методику научных предсказаний «Дельфы», когда большому числу специалистов предлагается ответить на один и тот же вопрос. Затем их знакомят со сводкой ответов и предлагают еще одну попытку. Такой процесс за небольшое число этапов приводит всех экспертов к единому мнению. Точно так же ТКО будет двигаться очень уверенно и спокойно.

3. Наличием многомодальных распределений. Предположим, что половина пассажиров решает пойти на обгон, а половина хочет остаться в своем ряду. Сигналы, полученные ЭВМ, выглядят тогда так:

На случай таких распределений программа должна предусматривать отбрасывание целой группы сигналов, т. е. выбирать только одно решение. В противном случае ЭВМ могла бы выбрать значение ускорения, необходимое для обгона, а угол поворота колес такой, при котором автобус останется в своем ряду, что неминуемо приведет к аварии. Пассажир, решивший идти на обгон и увидевший, что автобус не слушается его, поначалу станет яростно крутить руль, но быстро сообразит, в чем дело, и начнет действовать в соответствии с принятым ЭВМ решением. В результате движение автобуса будет строго рациональным и устойчивым.

б. Как организовать маршруты ТКО? Простейший метод состоит в том, чтобы вообще не устанавливать автобусных маршрутов и позволить всем автобусам ездить туда, куда пожелают пассажиры. Чтобы предотвратить угон автобуса какой-нибудь группой злоумышленников, потребуется 1) устроить множество остановок, излучающих определенный сигнал, который автоматически останавливает проходящий автобус, чтобы в него могли войти новые пассажиры, и 2) установить электронный заслон, препятствующий выезду автобусов за пределы города. Автобус остановится у городской черты и не двинется дальше, пока в него не войдут новые пассажиры и не поведут его в обратном направлении. При такой организации движения в часы пик автобусы будут курсировать по более или менее традиционным маршрутам, а в прочее время будут функционировать как многоместные такси.

в. Плата за право управления. Это прекрасная задача для теории игр. В часы пик, когда почти всем нужно ехать в одну сторону, по идее один пассажир может платить и везти всех остальных. Но поскольку ему может помешать любой одиночка, пожелавший отклониться от маршрута, у всех пассажиров есть определенный стимул немного заплатить, чтобы застраховаться от случайностей. При других обстоятельствах выгоднее всего, видимо, ехать зайцем и предоставить остальным вести автобус, пока он движется примерно в нужном вам направлении. Если же автобус резко свернет «не туда», то вам придется либо тут же основательно потратиться, чтобы вернуть его на желаемый курс, либо сойти на ближайшей остановке и ждать другого автобуса. Со временем, вероятно, установятся постоянные маршруты, освященные традицией. Темпераментная публика в Риме или Рио-де-Жанейро, несомненно, отдаст предпочтение системе, в которой, кто больше платит, тот и управляет автобусом. Флегматичным же англичанам, видимо, больше будут по душе постоянные маршруты и фиксированная плата за проезд.


Арахнавтика

Архонавтика - от греческого Arachne (паук). — Прим. перев.
Молодые паучки перемещаются на огромные расстояния, выпуская длинную паутинку, которая подхватывается ветром и уносит их. Достаточно длинная нить могла бы служить прекрасным парашютом, поскольку аэродинамическое вязкое сопротивление, которое испытывает нить в потоке газа, возрастает с увеличением ее длины, но мало зависит от ее диаметра. По расчетам Дедала, нить, эквивалентная обычному парашюту, должна достигать в длину 10 тыс. км. Правда, одна нить, во-первых, не выдержит тяжести человека, а, во-вторых, высота атмосферы окажется недостаточной для такой длинной нити. Но из десяти тысяч нитей — каждая по километру длиной — выйдет прекрасный парашют. Если же в качестве нитей использовать стеклянные или углеродные волокна, то диаметр каждой из них может быть меньше 0,01 мм, а общая масса такого «парашюта» не превысит 2 кг. (Дедал задумался, в частности, над вопросом, не мог ли бы какой-нибудь самоотверженный хиппи отрастить шевелюру такой длины, что позволила бы ему безопасно выпрыгивать из летящего самолета. Но едва ли густая грива из 200 тыс. волосинок по метру каждая окажется для этого достаточной. К тому же волосы растут слишком плотно, поэтому каждая волосинка не будет полностью обтекаться воздушным потоком.) Волоконный парашют Дедала будет снабжен большим каркасом, на котором закрепляются отдельные нити.

Достоинства нового парашюта несомненны. Он не только будет плавно тормозить падение по мере расправления волокон (без рывка, сопровождающего раскрытие обычного парашюта), но и будет совершенно невидим с земли. Десантники смогут приземляться незамеченными; впрочем, сам вид солдат, плавно спускающихся с неба без всяких приспособлений, должен полностью деморализовать противника. Дедал предполагает также использовать новые парашюты для спасения самолетов, потерпевших аварию в воздухе. Обычный парашют гигантских размеров не может спасти обреченный самолет хотя бы из-за резкого рывка в момент раскрытия. В то же время всего лишь тонна волокон, выпущенных из (семидесятитонного) самолета, плавно уменьшит скорость его падения до нескольких метров в секунду. Дедал также разрабатывает спортивный ранцевый парашют, использующий готовые волокна или даже изготавливающий их уже в полете. Увлекаемые восходящими потоками воздуха волокна поднимут спортсмена в небо и плавно опустят его за многие мили от места взлета. Этот новый спорт, сочетающий в себе прелести планеризма и воздухоплавания, можно было бы назвать арахнавтикой.

New Scientist, July 17, 1975

Из записной книжки Дедала

Нить в качестве парашюта. Какая сила требуется для протягивания нити сквозь вязкую жидкость? Воспользуемся для начала стандартной формулой, описывающей движение жидкости, заключенной между двумя длинными коаксиальными цилиндрами, в случае, когда внутренний цилиндр движется параллельно оси со скоростью v0. Скорость жидкости vr, на расстоянии r от оси дается выражением vr = (v0/lnγ) (lnr - lnR), где γ = r0/R — отношение радиусов внутреннего и внешнего цилиндров. Дифференцируя выражение для vr по r, получим dvr/dr = v0(r lnγ).

Это градиент аксиальной скорости жидкости в цилиндрическом слое, ограниченном радиусами r и r+dr. Согласно формуле, предложенной еще Ньютоном, сдвиговое напряжение N в вязкой среде определяется соотношением N = -ηdvr/dr, где η — вязкость жидкости.

Это напряжение существует по всей площади А = 2πrl поверхности цилиндрического слоя радиусом r и длиной l, испытывающего сдвиг. Тогда полная сила, возникающая в слое в результате сдвига, F = N А = -2πr/ηv0/(rlnγ) = -2πlηv0/lnγ.

Как и следовало ожидать, сила не зависит от расстояния от оси. Сила F передается от внутреннего движущегося цилиндра через все слои жидкости к внешнему неподвижному цилиндру.

Будем считать теперь, что сила F есть сила тяжести, действующая на массу m, прикрепленную к внутреннему цилиндру. Принимая F=mg, после простых преобразований находим скорость падения: v0 = -mglnγ/(2π/η). Пусть теперь диаметр внешнего цилиндра увеличивается до бесконечности, а внутренний цилиндр представляет собой нить радиусом r0 в свободном падении. Но тогда отношение γ=r0/R становится равным нулю, a lnγ = -∞. Скорость падения становится равной бесконечности. Что-то здесь не так. Поскольку в действительности летающие паучки не падают и не сворачивают себе шейки, столь безнадежный результат, по-видимому, ошибочен. Разумно было бы выйти из положения, определив некое характеристическое расстояние, на котором окружающий воздух перестает взаимодействовать с нитью, и принять его за R. В качестве такового можно взять хотя бы геометрическое среднее между l и r0 — в нашу формулу входит только логарифм этой величины, так что ошибка будет невелика, даже если мы очень сильно ошиблись в выборе R:

Волоконный парашют для человека. Пусть масса парашютиста составляет 70 кг, а масса парашюта не должна превышать m = 2 кг. Если мы используем стекловолокно с плотностью ρ = 2700 кг/м3 и, скажем, с радиусом r = 0,005 мм, то суммарная длина волокон должна составлять

Разделим общую длину на 10000 волокон, каждый по километру длиной, и используем этот пучок в качестве парашюта. Вязкость воздуха при 20°C равна 1,8×10-5 Н•с/м2, на каждое волокно приходится груз 70/10000 = 0,007 кг, и, согласно формуле (1), конечная скорость парашютиста составит

Это эквивалентно прыжку с двухметровой высоты и нисколько не опасно для парашютиста. Аналогично две тонны волокон замедлят падение семидесятитонного самолета до такой же скорости. Эти нити можно выпускать через фильеры из расплавленной массы. Вытянутые обтекающим потоком воздуха, такие волокна окажутся тоньше, чем при любой другой технологии их изготовления!


Per funicula ad astra - По канату — к звездам (лат.)

Являясь пионером освоения воздушного пространства, Дедал до сих пор не потерял интереса к проблемам аэронавтики и космонавтики. В настоящее время он размышляет над проблемами запуска искусственных спутников без использования ракет, которые, на его взгляд, несовершенны и неэкономичны. Дедал предлагает возвести на экваторе башню высотой 35700 км. Вершина такой башни, вращающейся вместе с Землей, движется с космической скоростью: достаточно поэтому поднять спутник наверх и оттолкнуть его. Если этот проект не будет принят, Дедал предлагает взамен более дешевый вариант: запустить на геостационарную орбиту высотой 40000 км спутник, к которому привязан трос. Другой конец троса закрепляется на экваторе, и спутник удерживает трос в натянутом состоянии. В дальнейшем по этому тросу можно было бы запускать небольшие спутники. К сожалению, из-за действия на запускаемый спутник кориолисовой силы трос будет отклоняться в сторону, противоположную направлению вращения Земли. Но Дедал надеется, что вскоре трос снова натянется и вернется в рабочее положение.

New Scientist, December 24, 1964

Вдохновленный отсутствием возражений по поводу его проекта «заякорить» на тросе геостационарный спутник, Дедал выдвигает еще более смелый проект. Он предлагает построить лифт на Луну. Для этого потребуется только достаточно мощная ракета, несущая трос в десять раз длиннее и с гарпуном на конце. При падении ракеты на Луну гарпун намертво закрепится в лунном грунте. Поскольку Луна всегда обращена к Земле одной стороной, на лунном конце троса никаких проблем не будет. Проблемы, как всегда, возникнут на Земле — из-за ее суточного вращения. Впрочем, трос можно закрепить на шарнире у Южного полюса. Если трос закрепить на экваторе, то он намотается на Землю и притянет Луну. Дедал, однако, опасается, что этот проект, несмотря на всю его привлекательность с точки зрения геофизиков и селенологов, вызовет возражения со стороны представителей Высокой Науки. Если же проект будет принят, то Дедал предлагает опустить Луну в Тихий океан, чтобы заодно проверить гипотезу, согласно которой этот океан образовался, когда Луна откололась от Земли.

New Scientist, October 16, 1965

1. Параметры геостационарного спутника

Период обращения спутника определяется уравнением Р2 = 4πr2a3/GM, где Р — период обращения, G — универсальная гравитационная постоянная, равная 6,67×-11 м3/кг•с2, а — радиус орбиты, М — масса центрального тела (для Земли М = 5.97×1024 кг). Поскольку Земля совершает один оборот за 24 ч (Р = 86400 с), в соответствии с этим уравнением получаем а = 42230 км. Спутник, находящийся на этом расстоянии от центра Земли, т. е. на высоте h = a - r0 = 42230 - 6370 = 35860 км над поверхностью Земли, будет «висеть» над одной и той же точкой экватора.

2. Привязной геостационарный спутник

Каждый участок троса должен выдерживать вес остальной части троса, расположенной ниже. Для этого трос должен утолщаться кверху приблизительно по экспоненциальному закону. Площадь сечения троса Aa вблизи спутника, находящегося на геостационарной орбите, связана с площадью сечения троса А0 у поверхности Земли соотношением Аа ≈ А0 exp(ρr0g/Y), где ρ — плотность материала троса, g — ускорение силы тяжести у поверхности Земли, Y — модуль упругости материала троса, r0 — радиус Земли.

3. Привязной спутник на шарнире Такой спутник может иметь любой период обраенияy (например, можно протянуть трос к Луне). Однако силы, действующие на ось, могут оказаться очень большими.


Комментарий Дедала

Эти две мои идейки появились на страницах журнала одними из первых. Они высказывались весьма неуверенно, ибо в ту пору редакция еще сомневалась, можно ли публиковать на страницах солидного журнала столь смелые предложения. Поэтому я был очень рад, когда основные положения обоих проектов были позднее повторены Дж. Д. Айзексом, А. Вайном, Г. Брэднером и Дж. Баккусом в журнале Science (151, Febr. 11, 1966, p. 682). Цитирую:

Помимо способности удерживаться в натянутом состоянии трос, закрепленный на экваторе вращающейся планеты или на естественном спутнике планеты (возможно, и на полюсе быстро вращающегося тела) и выходящий достаточно далеко за пределы орбиты стационарного спутника, будет обладать и другими интересными и полезными свойствами.

Массы, перемещаемые вдоль троса от поверхности центрального тела, будут запускаться в космическое пространство частично за счет энергии, отбираемой у вращающегося центрального тела.

Далее авторы рассчитывают прочность и сечеиие троса, указывают подходящие материалы для его изготовления и анализируют, на каких планетах и спутниках Солнечной системы этот проект легче всего реализовать.

Переписка с Артуром Кларком, в романе которого «Фонтаны рая» упоминается орбитальная башня высотой 35700 км, открыла мне, что эти мысли не так уж новы. Проект орбитальной башни впервые был предложен К. Э. Циолковским еще в 1895 г. Орбитальный трос был описан ленинградским инженером Ю. Арцутановым в «Комсомольской правде» от 31 июля 1960 г. Трос до Луны, по-видимому, придуман С. Голомбом в 1962 г. (Astronautics, 7–8, 1962, р. 26).

Артур Кларк сообщил мне: «…основная работа в этой области проводится Джеромом Пирсоном на базе ВВС США Райт-Паттерсон в штате Огайо. Его первая статья озаглавлена «Орбитальная башня»: установка для запуска космических аппаратов, использующая энергию вращения Земли» (Acta Astronautica, 2, 1975, p. 785). Пирсон думал, что эта идея целиком принадлежит ему, ибо библиографический поиск с помощью ЭВМ не выявил даже статью Айзекса!»

Наверное, следовало бы еще раз внимательно просмотреть и альбомы Леонардо да Винчи. Я утешаюсь тем, что фирма КОШМАР по крайней мере была одним из независимых авторов этих впечатляющих проектов.


Соленые спектры

Когда электрон изменяет скорость или направление движения, он испускает электромагнитное излучение. В таком случае, считает Дедал, при прохождении электрического тока по извилистому проводнику должен излучаться свет. Частота излучаемого «света» в такой установке будет равна числу извилин проводника, проходимых электроном за секунду, и, следовательно, она лежит гораздо ниже границы видимого диапазона спектра. Даже если бы электроны двигались со скоростью света (как, к примеру, в длинной, извилистой формы радиолампе под действием ускоряющего напряжения), длина волны испускаемого излучения была бы равна длине одной извилины. Чтобы получить таким способом видимый свет, понадобилась бы лампа с извилинами, меньшими длины волны видимого света. Дедал предлагает воспользоваться кристаллами поваренной соли. В кристаллической решетке соли положительные ионы натрия и отрицательные ионы хлора чередуются с интервалом 0,28 нм, и электроны в пучке, направленном вдоль поверхности кристалла, будут отклоняться то в одну, то в другую сторону под действием полей, создаваемых чередующимися положительными и отрицательными зарядами. По расчетам Дедала, заполненная солью радиолампа должна излучать видимый свет уже при разности потенциалов между электродами в 0,05 В.

КПД такой лампы невелик, так как электроны касаются поверхности кристалла только в отдельных участках своего пути. Поэтому Дедал ищет пористый материал с ионной структурой, внутри которого электроны вынуждены были бы двигаться по извилистой траектории. Для этой цели больше всего подходят цеолиты, широко применяемые в ионообменниках и молекулярных ситах. В лабиринте их ячеистой структуры электрон будет двигаться по траектории с извилинами длиной 2 нм. Дедал присоединяет электроды к кускам цеолита, запаивает их в стеклянные баллоны и откачивает воздух. В результате получается «лабиринтная радиолампа». В этой лампе электроны движутся зигзагообразно от катода к аноду, испуская электромагнитное излучение на всем пути. Видимый свет будет излучаться уже при напряжении 3 В, причем такая лампа способна перестраиваться по спектру в очень широком диапазоне. В зависимости от приложенного напряжения, определяющего скорость движения электронов внутри цеолита, лампа излучает свет с любой длиной волны: от инфракрасного до ультрафиолетового.

Аналогичный принцип возбуждения электромагнитного излучения используется в генераторных лампах СВЧ диапазона: магнетронах и клистронах. — Прим. ред.

Способность цеолампы изменять свой цвет с той же частотой, с какой изменяется управляющее напряжение, обеспечивает ей множество полезных применений в технике и в быту. При питании обычным переменным напряжением от сети цвет лампы будет казаться постоянным, так как глаз не в состоянии различить его изменения с частотой 50 Гц. Однако этот цвет легко изменять, управляя величиной или формой питающего напряжения. Особенно эффектно это свойство может использоваться в театральных постановках и на эстраде. В частности, Дедал надеется, что цеолампы помогут «живым» концертам одержать верх в конкуренции с звукозаписью. Цеолампа, управляемая через усилитель сигналом от музыкального инструмента, будет действовать как цветовой стробоскоп. Например, цвет струны, освещенной цеолампой, будет изменяться в фазе с ее собственными колебаниями. Скрипки, барабаны и тарелки станут переливаться всеми цветами радуги.

New Scientist, July 25, 1974

Звучащая тарелка переливается всеми цветами радуги: от фиолетового в верхнем положении до красного — в нижнем. В действительности же наличие высших гармоник приведет к еще более красочным зрелищным эффектам.

Из записной книжки Дедала

Электрон, имеющий массу m и заряд е, ускоряясь за счет разности потенциалов Е, приобретает скорость v, которая определяется из уравнения Ee = 1/2v2. Пусть этот электрон проходит через кристаллическую решетку с периодом l. Чтобы электрон «вилял» с частотой v, он должен проходить v периодов решетки в секунду, т. е. двигаться со скоростью v=vl. Соответствующая разность потенциалов равна E = 1/2mv2/e = mv2t2/2e = kv2t2; при m = 9,11×10-31 кг и e = 1,60×10-19 Кл находим k = 2,8×10-12 кг/Кл.

Таким образом, чтобы получить желтый свет с частотой v = 500 ТГц, направляя электроны вдоль поверхности кристалла соли с периодом решетки l = 0,28 нм, необходима разность потенциалов Е = 2,8×10-12 × (500×1012)2 × (0,28×10-9)2 = 0,054 В. Но это слишком мало, чтобы обеспечить достаточно интенсивную эмиссию электронов из обычных катодов.

Цеолиты выглядят гораздо более привлекательно. Они прозрачны, и внутри цеолита электроны движутся в извилистом «объемном» лабиринте, а не вдоль поверхности.

«Период решетки» l здесь составляет около 2 нм, соответственно и значения разности потенциалов получаются более приемлемые. Красному свету (400 ТГц) соответствует E=1,8 В, желтому (500 ТГц) — 2,8 В, голубому (600 ТГц) — 4 В, фиолетовому (750 ТГц) — 6,3 В. Подняв напряжение до нескольких киловольт, можно выйти в область дальнего ультрафиолета, однако в ИК-области напряжения будут слишком малы, чтобы обеспечить достаточную эмиссию электронов. Поэтому цеолампу скорее можно считать удобным перестраиваемым источником излучения видимого и ультрафиолетового диапазона.


Комментарий Дедала

Это изобретение не блещет новизной, как мне казалось вначале. Позднее я обнаружил, что аналогичный принцип используется в генераторе длинноволнового ИК-излучения Смита — Парселла (Physical Review, 92, 1953, p. 1069) В этом приборе электронный луч направляется вдоль поверхности дифракционной решетки с большой плотностью штрихов. Однако расстояние между штрихами дифракционной решети гораздо больше, чем период решетки цеолита поэтому источник Смита — Парселла пригодер только для дальней ИК-области. Кроме того излучение здесь генерируется только на поверхности, в то время как цеолампа генерирует свет во всем своем объеме. 


Двоичные биоритмы

Внутри каждого из нас «тикают» биологические часы, управляющие цикличностью нашего сна и бодрствования (см. [11], [12]). Этот суточный ритм обычно синхронизирован со сменой дня и ночи, но не абсолютно постоянен. Он может нарушаться, например, при перелете из одного часового пояса в другой. Во время полярной ночи или полярного дня продолжительность «суточного цикла» также может изменяться. У Дедала возникла мысль, что продолжительность биологических циклов определяется частотой пульса, как ход часов определяется частотой колебаний маятника, и теперь он пытается проверить свою идею. Самый простой способ деления — это деление на 2; 17 последовательных делений числа сердечных сокращений на 2 дают частоту, очень хорошо соответствующую суточному ритму. Дедал утверждает, что развитие и старение организма — естественные биологические периоды человеческой жизни — определяются через суточный ритм по точно такому же принципу. Так, 12 последовательных делений суточного ритма на 2 начиная от момента рождения, определяют наступление зрелости; разделив на 2 еще раз, мы получим срок наступления менопаузы у женщин, еще одно деление на 2 обычно оказывается роковым. Самое интересное заключается в том, что большинство делителей частоты может быть привязано не к основной частоте задающего генератора, а к ее первой гармонике — тогда выходная частота увеличивается вдвое. Наоборот, если привязать их к половинной частоте задающего генератора, то выходная частота уменьшится вдвое. Таким образом, хотя суточный биоритм решительно сопротивляется попыткам несколько ускорить или замедлить его, увеличить или уменьшить его вдвое будет совсем нетрудно.

На крупных птицефермах нередко используют искусственные 12-часовые сутки: «день» и «иочь» длятся по шесть часов. При таком режиме куры несутся в два раза чаще. — Прим. ред.

В соответствии с этими выводами Дедал планирует произвести революцию в деле воспитания и обучения, используя возможность управления биологическим суточным циклом. Он проектирует школы и жилые дома, в которых с помощью искусственного освещения продолжительность дня и ночи можно либо вдвое сократить, либо вдвое увеличить. Биоритмы детей легко синхронизируются с продолжительностью таких искусственных суток. Растянутый ритм будет идеален для этапа овладения языком в возрасте трех — пяти лет, а также для «интеллектуального всплеска» в четырнадцать — пятнадцать лет, т. е. в те периоды, когда можно было бы достичь гораздо больших успехов, будь на то больше времени. Наоборот, ускоренный ритм позволит быстрее пережить «трудный возраст» и период капризов полуторагодовалых младенцев.

Полезным окажется применение этого принципа и в другие периоды жизни: таким образом можно сократить продолжительность «кризиса середины жизни» или продлить поздний подъем творческих способностей у людей пожилого возраста. Дедал, однако, подозревает, что прожить всю жизнь на половинной скорости и благодаря этому дожить до 140 лет или, запустив биологические часы вспять, вернуться в детство все-таки не удастся.

New Scientist, August 14, 1974.

Из записной книжки Дедала

Действие большинства цифровых часов основано на двоичном делении частоты задающего генератора с помощью цепочки триггеров. Из нервных клеток нетрудно построить схему, аналогичную по своему действию триггерному делителю частоты. Если бы организму требовался точный датчик времени, то он мог бы воспользоваться этим принципом. Но делает ли он это? В животном мире рекорд точности отсчета времени принадлежит цикаде, которая проводит 16 лет под землей в виде личинки и только на 17-й год превращается во взрослое насекомое. Ясно, что здесь не обходится без цифровых часов. Сторонники теории биоритмов утверждают, что в момент рождения человека вступают в действие три различных биологических цикла, повторяющиеся с точной периодичностью до конца жизни: интеллектуальный цикл продолжительностью 33 дня, эмоциональный — 28 дней и физический — 20 дней. Точность такого порядка может обеспечиваться тоже только цифровыми часами.

Попробуем разобраться, что лежит в основе этих циклов. На роль эталонной частоты хорошо подходит частота альфа-ритма мозга, составляющая 10–11 Гц. Три последовательных деления на 2 дают нам 1,3 Гц, или 80 ударов в минуту, — «цифровое» значение пульса. Семнадцать последовательных делений этой частоты на 2 дают суточный ритм: 1,3/(217) = 10-5 Гц, или один цикл за 28 ч. Это неплохое приближение для естественного суточного ритма. Людям, которым приходилось многие недели проводить в пещерах, всегда казалось, что они находились там меньше дней, чем на самом деле. Из этого можно заключить, что «естественный» биологический цикл длиннее земных суток. В нормальных условиях биологический «задающий генератор» немного сбивается, приноравливаясь к смене дня и ночи. С точностью до одного дня мы можем получить частоту интеллектуального биоритма, разделив реальный суточный ритм на 25, а 20-дневный физический цикл — разделив естественный 28-часовой суточный ритм на 24. Двадцативосьмидневный эмоциональный ритм получается как половина суммы частот интеллектуального и физического ритмов: 1/2(33+20) = 26,5. Во всех этих расчетах, конечно, немало натяжек. Биологической «электронике» не нужна излишняя точность: она должна обладать гибкостью и способностью приспосабливаться к внешним условиям. Так что сторонники теории биоритмов явно переоценивают ее возможности.

Специалисты по биоритмам фирмы КОШМАР достигли немалых успехов в своих попытках затормозить развитие различных животных и тем самым продлить период «юности», когда животные наиболее восприимчивы к обучению. После семи лет тренировок головастики научились плавать строем и прыгать через обруч.

Комментарий Дедала

Похоже, что американская фирма «Контрол дейта корпорейшн», производящая компьютеры, серьезно относится к биоритмам (New Scientist, Jan. 1, 1981, p. 38). Однако существует и более скептическая точка зрения (Archives of General Psychiatry, 35(1), 1978, p. 41, New Scientist, March 20, 1980, p. 926).


Магнитный «мех»

Архитекторам, занимающимся проблемами теплоизоляции зданий, следовало бы поучиться у природы. Теплоизоляционный слой должен находиться не с внутренней стороны стен и не в стенах, а снаружи. В этом случае кирпичная кладка, обладающая большой тепловой инерцией, будет сглаживать суточные колебания температуры внутри помещения. В идеале наружное покрытие стен должно также обладать водоотталкивающими, звукопоглощающими, декоративными и защитными свойствами. Построить мохнатое здание, однако, не так просто. Покрытие из стекловаты слишком неэлегантно, а электростатический метод, применяемый при изготовлении искусственного меха, слишком сложен. Биологи фирмы КОШМАР подыскивают газонную траву, которую можно было бы выращивать на стенах как своего рода растительный «мех». Но есть опасения, что трава, как и плющ, будет со временем разрушать кирпичную кладку.

По мнению Дедала, решение проблемы дает новая магнитная краска. Она представляет собой взвесь железных опилок в нитролаке. Краску наносят на поверхность и над слоем свежей краски проводят мощным магнитом. Опилки притягиваются магнитом и вытягивают за собой ниточку лака. Нить очень быстро затвердевает, и стена оказывается покрытой длинным ворсом. Такое покрытие, которому можно придать любую окраску, не только обладает прекрасными теплоизоляционными звукопоглощающими свойствами, но и очень привлекательно на вид. Зеленый домик отлично впишется в сельский пейзаж, радуя глаз колышущимся на ветру мохнатым покровом. Даже в городах «пушистые кварталы» будут выглядеть гораздо эстетичнее нынешних. Дома можно раскрашивать «под зебру», «под жирафа», изобретать любые орнаменты. И архитектура в целом обогатится новой невиданной мягкостью цветов, линий и поверхностей. Дедал также намеревается применить свое изобретение для решения более частных проблем. Нет сомнения, что огромным спросом будет пользоваться средство против облысения КОШМАР (наносится на лысину и укладывается в прическу магнитом; новые волосы держатся не хуже старых!). Подобное же средство надежно защитит полярников от холода и поможет специалистам по приматам войти в более тесный контакт с обезьянами. Дедал догадывается, однако, что названные применения не исчерпывают всех возможностей нового покрытия. Железные опилки на кончиках волокон можно отклонять магнитным полем. Таким образом, магнитный «мех» может стать первым управляемым теплоизолятором. Теплоизоляционными свойствами мохнатого дома или махровой рубашки можно будет управлять при помощи магнитного поля, создаваемого системой электрических приводов. В жаркую погоду термостат включает ток и ворс приглаживается; в холодную погоду ворс взъерошивается и его теплоизоляционные свойства улучшаются. Дом будет приспосабливаться к изменениям погоды, а владелец рубашки на собственном опыте ощутит все прелести автоматической терморегуляции, существующей у кошек и других животных. Если рубашка будет покрыта ворсом и с изнанки, то движением ворса на отдельных участках можно будет управлять со спрятанного в рукаве пульта, и владелец рубашки сможет в любой момент дистанционно почесаться там, где на людях это сделать неприлично. Такая рубашка хороша и для плавания, поскольку она способна загребать воду своими ворсинками, как бактерии ресничками. После купания рубашка сама стряхнет с себя воду и мгновенно станет сухой.

Что еще более интересно, магнитные волокна могут вибрировать в переменном магнитном поле с частотой вплоть до верхней границы звукового диапазона. Рубашка-громкоговоритель со встроенным в воротник микрофоном и усилителем пригодится ораторам; по этому же принципу можно изготовить и громкоговорящие обои. Колебания магнитных ворсинок передаются воздуху за счет вязкого трения и создают однородное ненаправленное звуковое поле. Подавая на различные участки стены разные сигналы, можно добиться подлинно объемного звучания. В качестве других применений этого замечательного изобретения можно назвать магнитную зубную щетку, которая сама чистит зубы, и перистальтический ковер. В основу этого ковра вплетены управляющие провода, создающие на ворсе бегущую волну, которая уносит пыль и мелкий мусор к миниатюрному мусоросборнику. Такой ковер избавит хозяйку от многих забот, но вряд ли придется по душе кошкам.

New Scientist, June 6, 13, 1974.

Головокружительный звук

Человеческое ухо выполняет одновременно две функции: оно является органом слуха (кортиев орган, улитка) и органом равновесия (полукружные каналы). Воспринимаемый нами звук должен возбуждать колебания как в кортиевом органе, так и в полукружном канале — почему же при громком звуке мы не теряем равновесия? Высокочастотные звуковые колебания, говорит Дедал, не могут возбудить колебания жидкости в полукружном канале. А что если создать сильно асимметричный звуковой сигнал, в котором короткие импульсы повышенного давления чередуются с длительными периодами низкого давления? По мнению Дедала, такой сигнал не будет гаситься в лабиринте, а сможет раскачать жидкость в полукружных каналах. Вязкая жидкость будет реагировать только на продолжительные импульсы. Вначале Дедал сомневался в правильности этого вывода. В акустических лабораториях очень часто используют сигналы такой формы, но никто не хватается за голову и не валится с ног. Потом Дедал вспомнил, что усилители, громкоговорители, да и сами уши вносят существенные фазовые искажения в сигнал. Все гармонические составляющие исходного сигнала, определяющие его слуховое восприятие, сохраняются, однако форма сигнала чаще всего не имеет ничего общего с исходной. Поэтому инженеры фирмы КОШМАР работают над созданием специальных генераторов, пытаясь подобрать такую форму исходного звукового сигнала, чтобы после всех изменений он приходил в лабиринт именно в том виде, который необходим для возбуждения колебаний жидкости в полукружных каналах. Чувство равновесия нарушится, человек почувствует головокружение и упадет. Это жуткое, но безвредное оружие будет идеальным средством усмирения бушующей толпы, деморализации солдат противника; вообще с помощью такого устройства можно заставить любого человека прекратить любую деятельность и судорожно заняться поиском опоры. Однако «тактическая ценность» этого оружия несколько снижается из-за того, что оно в равной мере поражает обе стороны. «Головокружительный звук» меньшей интенсивности, вызывающий лишь слабое замешательство, будет как нельзя кстати для композиторов-авангардистов, все еще не теряющих надежды покорить буржуазную аудиторию. Головокружительный ультразвук мог бы делать свое черное дело, оставаясь незаметным для слуха. У наркологов появится способ действовать на расстоянии на алкоголиков и наркоманов, вызывая у них головокружение и тошноту в тот самый момент, когда они вознамерятся предаться своим порокам.

Впрочем, аналогичный принцип можно использовать и для достижения обратного эффекта. Почему обязательно обманывать чувство равновесия, не лучше ли помочь ему? Можно придумать некий аналог слухового аппарата, который подавал бы во внутреннее ухо более точную и подробную информацию для органов равновесия. Такой аппарат принесет огромную пользу старикам и людям с нарушенной координацией. Этот прибор позволит не только восстановить утраченную координацию, но и значительно улучшить ее по сравнению с нормальной. Дело в том, что в отличие от бинаурального слуха, способного создавать эффект объемного звучания, наличие парных вестибулярных органов не дает «объемной» информации о равновесии. Вестибулярный аппарат определяет скорость вращения головы относительно некоторой оси, но не способен определить центр вращения. Подавая в вестибулярный аппарат искусственно усиленный сигнал разбаланса, мы позволим ему определять не только угловые ускорения по трем измерениям, но и мгновенные центры вращения. Соответственно Дедал разрабатывает стереошляпу, оснащенную современными чувствительными акселерометрами. Этот прибор измеряет угловые скорости и ускорения, определяет мгновенные центры вращения и через наушники передает сигнал разбаланса (закодированный в виде ультразвуковых колебаний определенной формы) в правое и левое ухо по отдельности. Наушники не помешают нормально воспринимать окружающие звуки, но обладатель стереошляпы приобретет качественно новое чувство координации. Легкость, с которой мы учимся ездить на велосипеде, доказывает, что человек без труда овладевает новыми для себя навыками балансировки, так что обладатель стереошляпы быстро научится пользоваться ею чисто рефлекторно.

Появится новое поколение танцовщиков, канатоходцев и эквилибристов. Граждане преклонного возраста смогут ходить по проволоке; возникнут новые виды спорта; наша жнзнь обогатится новыми ощущениями. Более того, к стереошляпе можно будет подключать выносные датчики. Летчик сможет непосредственно ощущать поведение своей машины даже в тумане или в темноте; он как бы сольется с самолетом и будет вести его инстинктивно и безошибочно. Космонавты, страдающие в невесомости от расстройства вестибулярного аппарата, получает надежное средство инерциальной навигации. Стереошляпа Дедала исцелит и страдающих от морской болезни, если подключить к ней навигационный гирогоризонт. А при острых отравлениях стереошляпа поможет мгновенно очистить желудок, направив в уши искаженный сигнал.

New Scientist, November 16, 23, 1978

Использование головокружительного звука дает нам гуманный способ борьбы с засаживанием голубями общественных зданий: птицам не удается удержаться на узких карнизах.


Макинтош для микробов

Специалисты по генной инженерии утверждают, что микробы — если ввести в их хромосомы подходящие гены — могут синтезировать любые органические вещества, в том числе и ценные лекарства. Но чтобы выделить эти вещества и ввести их пациенту, требуются сложные процессы выращивания штаммов, очистки, упаковки и т. п. Дедал изобрел покрытие для микробов, позволяющее упразднить все эти стадии. Дело в том, что микробы нельзя непосредственно вводить в организм, так как он начинает яростно сражаться с ними, а они в ответ ожесточенно размножаются. А если окружить микроб тонкой полимерной пленкой? Иммунная защита организма, вступающая в действие при проникновении в него чужеродных белков, не сработает. Если же пленку сделать проницаемой для воды, питательных веществ и продуктов метаболизма, то микробу будет обеспечено вполне сносное существование. Делиться он не сможет за неимением достаточного свободного пространства.

Поскольку микробы, как предполагается, бессмертны, находясь в оболочке, онн будут выделять в кровь пациента лекарственное вещество неопределенно долго — по крайней мере до тех пор, пока не разрушится оболочка.

Пролонгирование действия лекарственных веществ методом микрокапсулироваиия применяется довольно широко. Таким путем можно вводить и микроорганизмы. Интересен, пожалуй, сам способ создания оболочки, предложенный Дедалом. — Прим. ред.

Организм же мгновенно справится с беззащитным микробом-одиночкой.

Биохимики фирмы КОШМАР разрабатывают катализаторы процесса полимеризации, которые адсорбируются на стенках клетки и позволяют формировать защитную оболочку микроба прямо из раствора подходящего мономера. Как только это удастся сделать, фирма собирается приступить к испытанию на добровольцах микробов в оболочке, вырабатывающих инсулин, интерферон, антибиотики и другие лекарства. Одна инъекция будет действовать в течение многих месяцев. Этот метод позволит использовать и такие лекарственные вещества, для которых неприемлема обычная процедура приготовления и консервации. В этой связи Дедал вспоминает, что никотин может поступать в организм только при курении потому, что на воздухе он быстро разрушается. И лишь путем быстрой возгонки никотина из табака и последующей ингаляции можно ввести в легкие достаточное для курильщика количество ннкотнна. Микробы же, циркулирующие в крови и непрерывно выделяющие свежевыработанный никотин, могут доставлять курильщику постоянное удовольствие, в то же время избавляя его от риска заболеть раком легких, а всех прочих от запаха табачного дыма!

New Scientist, February 5, 1981

Из записной книжки Дедала

Могут ли микробы существовать в полимерной оболочке? По-видимому, да, если верить работе С. Апдайка, Д. Харриса и Е. Шраго (Nature, 224, 1969, р. 11–22). Эти авторы помещали Tetrahymena pyriformis и Escherichia coli в растворы акриламида и под действием излучения производили полимеризацию мономера. Несчастные Tetrahymena pyriformis после этого еще долго бились в своих тесных клетках. Они продолжали жить в течение нескольких дней (не более пяти), хотя вряд ли могли питаться полиакриламндом. В тонких проницаемых оболочках микробам было бы, наверное, гораздо легче выжить. Будет ли полимерная оболочка достаточно проницаемой для воды, кислорода, продуктов жизнедеятельности и т. п.? Допустим, что мы имеем дело с кишечной палочкой Escherichia coli, имеющей диаметр, скажем, 3 мкм (радиус 1,5×10-6 м) — Тогда площадь ее поверхности равна А = 4πr2 = 2,8×10-11 м2, а объем V = 4πr3/3 = = 1,4×10-17 м3. Полиэтиленовая пленка толщиной 25 мкм обладает по отношению к водяному пару проницаемостью, равной 2×10-7 кг/м2с, когда значения относительной влажности по разные стороны пленки отличаются на 75%. Можно ожидать, что проницаемость пленки толщиной 1 мкм будет примерно в 25 раз выше и такая пленка, сможет пропускать k = 25×2×10-7 кг/м-с, или 5×10-9 м3 воды на 1 м2 поверхности за секунду. Тогда кишечная палочка в полиэтиленовом «плаще» толщиной 1 мкм сможет прокачивать сквозь оболочку объем воды, равный ее собственному объему, за время t = V/kA = 1,4×10-17/(5×10-9 × 2,8×10-11) = 100 с. Для молекул более крупных, чем молекулы воды, интенсивность обмена окажется ниже. Однако совершенно ясно, что с проницаемостью проблем не возникнет: всегда можно модифицировать полимер и сделать его проницаемым для инсулина и других белковых молекул.

Какие вещества могут производиться бактериями, введенными в организм, с наибольшей пользой? Прежде всего, конечно, лекарства, которые вводятся в малых дозах на протяжении длительного курса лечения: инсулин, гормональные препараты, транквилизаторы. Кроме того, витамины — они не вырабатываются в нашем организме, и было бы очень удобно, если бы их постоянно производили бактерии. (Для выработки ощутимого количества алкоголя микроорганизмов потребовалось бы слишком много.) Еще идея: заставить бактерии вырабатывать пенициллин. Этот антибиотик опасен для бактерий только при их размножении. А пока микроб остается в своей оболочке, он неуязвим. Когда же оболочка разрушится и бактерия получит возможность делиться, ее убьет выработанный ею же пенициллин.


Креслодин

Побывав как-то на нескончаемо длинной и скучной научной лекции и вдоволь настрадавшись от долгого сидения в неудобном современном кресле, Дедал приступил к разработке динамической теории комфорта, которая, по его мнению, призвана произвести революцию в области конструирования мебели. Как считает Дедал, человек, сидя долго даже на самом удобном стуле, утомляется из-за длительного однообразия ощущений. Нервы и мускулы требуют разнообразия, а статическая нагрузка, как бы равномерно она ни была распределена, не может долго создавать ощущение комфорта. Ерзая на стуле, мы пытаемся разнообразить нагрузки — но безуспешно. Поэтому Дедал разрабатывает динамическое кресло, сиденье, спинка и подлокотники которого состоят из большого числа независимых элементов, совершающих медленные нерегулярные движения, что разнообразит нагрузки на соприкасающиеся с креслом части тела. Изменяется даже фактура сиденья, ибо оно изготовлено из большого числа тонких трубочек, покрытых различными материалами и периодически накачиваемых воздухом. Наконец-то удастся совместить достойную позу и комфорт!

Фирма КОШМАР рассчитывает на большой сбыт своей новинки школам, конференц-залам, авиакомпаниям под лозунгом «креслодин — стул, который ерзает за вас». Аналогичным образом можно обеспечить комфорт и другим частям человеческого тела. Как известно, солдатам часто приходится стоять по стойке смирно довольно длительное время. Специально для них фирма КОШМАР разработала модель сапог с автоматически изменяющейся высотой каблука, в которых ноги избавлены от длительного действия статической нагрузки и хорошо отдыхают. Нижнее белье, сконструированное по такому принципу, спасет человека от ощущения зуда и неудобства при продолжительном сидении в напряженной позе, скажем, во время деловых бесед или в парикмахерской. А человек, спящий на кровати фирмы КОШМАР, не будет совершать во сне беспорядочных движений, а погрузится в глубокий безмятежный сон.

New Scientist, December 16, 1971

Комментарий Дедала

В очередной раз фирма КОШМАР выступила с идеей, которой позднее воспользовались другие. Различные конструкции динамических кроватей были впоследствии разработаны и запатентованы (немало таких конструкций описано в колонке «Рудименты мудрости» журнала Observer Magazine, May 4, 1975). А в печатном издании фирмы «Дюпон» Elastomers Notebook за декабрь 1978 г. об использовании эластичного полиэфирного материала «хайтрел» говорится следующее:

Пульсирующее сиденье уменьшает усталость водителей, обеспечивая нормальную циркуляцию крови в ягодицах и ногах. Подушка «Пульсейр», разработанная фирмой «Г. Кох эид саис» для летчиков ВВС США, была продемонстрирована в школе космической медицины ВВС в Бруксе. Недавно эту подушку стали использовать водители грузовиков. Подушка представляет собой тонкую оболочку из полиэфирного эластомера «хайтрел» фирмы «Дюпон», внутри которой имеется множество воздушных камер, наполняемых воздухом в течение 2 с с интервалом 6 с. Этим создается едва ощутимое волнообразное движение, которое мягко массирует мускулы и стимулирует кровообращение. При помощи реле времени подушка приводится в действие на 10 мин каждый час.

Американцы скопировали даже пневматический механизм моего креслоднна.

Но фирма КОШМАР, как всегда, шагает впереди. Я пришел к выводу, что произвольная стимуляция недостаточна и что в динамическом кресле следует использовать принцип обратной связи. В кресле необходимо установить датчики, регистрирующие локальное подрагивание мускулов, которое свидетельствует об их утомлении. Тогда кресло начинает трансформироваться в поисках такой конфигурации, при которой подрагивание мускулов прекращается. Такое кресло поистине ерзает за вас.


Антипарник

До сих пор все попытки использовать солнечную энергию основывались на улавливании солнечных лучей. Дедал считает этот подход естественным, но довольно наивным. Для получения энергии требуется не только тепло, но и холод: в энергию преобразуется поток тепла, идущий от горячего тела к холодному. Поэтому во всяком тепловом двигателе можно найти не только «котел», но и «холодильник».

Хорошо известно, что кпд теплового двигателя зависит от разности температур между нагревателем и холодильником. Поэтому Дедал подыскивает хороший холодильник для солнечного теплового двигателя. Лучшим холодильником, конечно, является ночное небо: оно абсолютно черное и его радиационная температура близка к абсолютному нулю. Дедал планирует поместить конденсатор теплового двигателя в фокусе большого вогнутого зеркала, чтобы ночью в нем «собирался» весь холод ночного неба. Если изолировать конденсатор от воздуха вакуумной теплоизоляцией, прозрачной для тепловых лучей, то за счет радиационного охлаждения его температура может опуститься почти до абсолютного нуля. Такой холодильник можно использовать для сжижения воздуха и в качестве конденсатора теплового двигателя, нагреватель которого имеет нормальную температуру приземного слоя атмосферы. В такой конструкции не нужна ни сложная оптика, обычно используемая в гелиоустановках, ни следящая система, поскольку даже не слишком правильное вогнутое зеркало будет отражать ночное небо на охлаждаемый объект. В этой установке нагревателем служит сама Земля, а Солнце только греет Землю.

А чтобы эта система могла функционировать днем, Дедал изобрел еще антипарник. Это камера, изготовленная из черного полиэтилена или, скажем, из теллурида кадмия. Названные вещества непрозрачны для излучения видимого диапазона спектра, но пропускают длинноволновую радиацию, испускаемую объектами при нормальной земной температуре. Такой антипарник не пропускает внутрь солнечные лучи, но выпускает наружу тепловое излучение; в результате помещенные в него объекты охлаждаются. Радиационная температура дневного неба также низка, поэтому объект, помещенный в антипарник, будет охлаждаться и днем, и ночью, т. е. холод в антипарнике будет вырабатываться постоянно.

New Scientist, March 3, 1966

Комментарий Дедала

Простейшим, вариантом антипарника, по-видимому, является естественная глубокая выемка в скальной породе, где собирается утренняя роса. В ясные ночи скала излучает тепло в холодное небо. Окружающий воздух при этом охлаждается и отдает свою влагу. Моя идея с зеркалом основана на том же принципе. Точно так же, как параболическое зеркало, направляя солнечные лучи со всех сторон на объект, раскаляет его докрасна, большое зеркало может «собрать» на объекте холод всего ночного неба. Требования к подобной оптической системе гораздо ниже, чем к гелиоконцентратору, а в применении к тепловому двигателю она может оказаться значительно более эффективной. Согласно теореме Карно, максимальный кпд любого теплового двигателя η = (Tнагр - Tхол)/Tнагр, где Tнагр и Tхол — абсолютные температуры соответственно нагревателя и холодильника. Ясно, что гораздо проще приблизить кпд к единице, уменьшая температуру холодильника, чем увеличивая температуру нагревателя. Для достижения кпд = 50% в обычном двигателе на солнечной энергии, холодильник которого имеет температуру окружающего воздуха (300 К), необходимо довести температуру нагревателя до 600 К. Если же температура нагревателя равна 300 К, то такой же кпд получается при температуре холодильника 150 К, т. е. при вдвое меньшей разности температур.

Естественным развитием идеи является антипарник, в котором используются не зеркала, а фильтры, отражающие солнечные лучи, но пропускающие длинноволновое излучение. При хорошем подборе спектральных характеристик фильтров объект, помещенный в антипарник, будет охлаждаться не только ночью, но и днем. За время, прошедшее после опубликования моей заметки, антипарник действительно был построен и испытан (Applied Energy, 3, 1978, p. 267). Б. Бартоли и его сотрудники из университета в Неаполе разработали фильтры, намного превосходящие по своим характеристикам предложенные мной фильтры из теллурида кадмия. Они использовали полированный алюминий с тедларовым покрытием, прозрачным для видимого света и непрозрачным в инфракрасном «окне» атмосферы (8–13 мкм). Падая на пластину, солнечные лучи отражаются от поверхности металла, не нагревая его. Пластина охлаждается, излучая в пространство тепло. Опытные образцы таких пластин днем и ночью имели температуру на 10 °C ниже температуры окружающего воздуха — и это не предел. В принципе, комбинируя соответствующим образом зеркала и фильтры, можно охладить объект до температуры фонового космического излучения (3К). Я с нетерпением ожидаю сообщений о дальнейшем развитии событий.

Гальванизированные растения

В конечном счете вся жизнь на Земле зависит от процесса фотосинтеза, происходящего в зеленых растениях; поэтому весьма огорчительно, что эффективность этого процесса составляет всего несколько процентов. Дедал отмечает, что скорость роста растений существенно ограничена медленным током питательных веществ в их тканях. Если бы удалось ускорить движение соков, переносящих питательные вещества от корней к листьям, то и все процессы жизнедеятельности растений протекали бы быстрее. Для этого Дедал намерен использовать явление электроосмоса — движение жидкости сквозь пористую среду под действием электрического поля. По расчетам Дедала, вертикально направленное электрическое поле напряженностью несколько киловольт на метр способно удвоить скорость движения соков в растениях. Для создания такой напряженности поля над травинкой потребуется напряжение в несколько сотен вольт, над колосом — несколько киловольт, над высоким деревом — сотни киловольт. Благодаря высокому электрическому сопротивлению растительных тканей ток утечки будет очень мал и потребляемая мощность составит всего несколько ватт. Ботаники фирмы КОШМАР устанавливают высоковольтные генераторы, питающиеся энергией ветра, на макушках сосен и натягивают над нивами паутину проводов (одновременно она может служить защитой от птиц). Это произведет революцию в сельском хозяйстве. Хлеба будут созревать в считанные недели, деревья вымахают за год в полный рост, и вообще наступит новая эра растительного изобилия. Электрифицированными растениями будет очень легко управлять. Уменьшая напряжение, мы замедлим их рост; если изменить полярность напряжения, то рост остановится и растение как бы заснет; при достаточно высоком напряжении обратной полярности соки потекут вспять и растение погибнет. Очистить заросший сорняками участок можно будет, набросив на него металлическую сетку и подключив ее к источнику высокого напряжения, что позволит обойтись без применения химии. Используя электрифицированную сетку, мы сможем придавать живым изгородям любую желаемую форму, создавать настоящие зеленые скульптуры. А электрическая «газонорастилка» фирмы КОШМАР, представляющая собой просто металлический лист с отверстиями, который перемещают в нескольких сантиметрах над землей, обеспечит нам идеальный газон, покрытый травниками абсолютно одинаковой высоты.

New Scientist, January 15, 1981

Электрический садовник: фигурная сетка, находящаяся под напряжением, останавливает рост побегов, как только они касаются ее, придавая растению заранее заданную форму.

Из записной книжки Дедала

Соки поднимаются по стеблю растений вверх под действием осмотического давления, которое должно быть как минимум равно гидростатическому давлению (составляющему 1 атм на каждые 10 м высоты растения, илн 104 Н/м2 на метр). Чтобы заметно влиять на скорость движения соков, электроосмотическое давление должно иметь по крайней мере такой же порядок величины. Какое для этого потребуется напряжение?

Давление р Н/м2, создаваемое разностью потенциалов V В в жидкости с относительной диэлектрической проницаемостью ε, заключенной в пористых капиллярах радиусом r, и при контактной разности потенциалов между жидкостью и пористой средой ξ В равно р = 8Vξεε0/r2, где ε0 = 8,85×10-12 Ф/м — диэлектрическая проницаемость вакуума. Таким образом в растении с капиллярами радиусом 10 мкм (r = 10-5 м), заполненными жидкостью с ε = 81, и при ξ = 0,05 В электроосмическое давление величиной 104 Н/м2 будет развиваться при напряжении V = pr2/8ξεε0 = 104×10-10 (8× 0,05 × 81 × 8,85×10-12) = 3500 В = 3,5 кВ.

Следовательно, для заметного ускорения движения соков в растениях понадобится разность потенциалов в 3,5 кВ на каждый метр высоты растения. Какая при этом потребуется мощность?

Удельное электрическое сопротивление сухой древесины составляет 108–1011 Ом•м; сопротивление живой растительной ткани, конечно, меньше: допустим, 106 Ом•м. Тогда сопротивление ствола дерева радиусом 5 см равно R = 106/(π×0,052) = 1,3×108 Ом на метр длины. При разности потенциалов Е = 3,5 кВ на этом сопротивлении рассеивается мощность Р = E2/R = 0,1 Вт (т. е. на дереве высотой 10 м рассеивается мощность 1 Вт). Величина тока составит E/R = 30 мкА. Мощности, рассеиваемые на мелких растениях, будут вообще мизерны: колос сечением 1 мм2 будет потреблять мощность 13 мкВт на метр высоты при токе в 4 нА. Это вселяет надежду.

Комментарий Дедала

Вскоре после публикации моей заметки журнал получил письмо от читателя (New Scientist, Febr. 12, 1981, p. 456), обратившего наше внимание на две статьи В. Блэкмана, опубликованные еще в 1924 г. (Journal of Agricultural Science, 14, 1924, p. 240, 268). В этих статьях описывается положительное влияние высокого электрического напряжения на рост таких злаков, как овес и ячмень; при этом упоминаются все описанные мной атрибуты — металлическая сетка над растениями, постоянное (а не переменное) напряжение в несколько десятков киловольт, токи в миллиардные доли ампера на каждое растение. Скорость роста при таких условиях увеличивалась в среднем на 20%.

Опоздав со своим открытием на 60 лет, я нахожу утешение в том, что мне удалось подвести теоретическую основу под экспериментальный факт, казавшийся загадочным. Позднее были описаны другие опыты по изучению влияния электрического поля на растения (New Scientist, Febr. 12?—№, p. 406; March 19, 1981, p. 741). Быть может, этот метод вновь привлечет внимание исследователей.

Электроосмотическое ускорение роста. Проволочная сетка, находящаяся под «ускоряющим» потенциалом, способствует дальнейшему росту достигших ее растений. Низкорослые растения, не достающие до сетки, не испытывают ее благотворного действия.


Взлет и падение современной архитектуры

Дедал с интересом воспринял недавнее заявление архитектора Сейферта, строителя высотных зданий, который теперь отрекается от своих деяний и считает такое строительство социальным злом. Но что же делать с этими зданиями? Не взрывать же их динамитом! Дедал предлагает великолепное решение: не сносить, а валить. К счастью, Сейферт и его коллеги строили свои здания на открытых пространствах, где вполне достаточно места и для лежачего небоскреба. Поваленный небоскреб нетрудно трансформировать в сплошной ряд коттеджей, напоминающих о деревеньках, поглощенных в свое время городом. Конечно, нельзя просто так свалить здание, даже если «подмостить» ему огромную надувную подушку. Не пройдет и привлекательная на первый взгляд идея заполнить здание гелием и плавно приземлить его, как гигантский аэростат: слишком велик вес небоскреба. Поэтому Дедал разрабатывает систему парашютов и тормозных ракетных двигателей, с помощью которой здание, окруженное развевающимся шелком и клубами дыма, будет бережно опрокинуто на землю.

Любопытные проблемы возникнут при перестройке положенного набок небоскреба. В квадратном лестничном пролете можно будет пользоваться одной половиной лестниц (только стороны ступенек поменяются ролями), а другую половину придется переделать. Лифты превратятся в горизонтальную внутреннюю железную дорогу, правда, двери ее «вагончиков» будут иметь устрашающее сходство с опускными решетками средневековых замков. Полы и потолки превратятся в стены, и наоборот; к счастью, благодаря геометрической правильности современных жилых помещений это не создаст больших проблем. Ванна и стенной шкаф поменяются ролями, а из унитаза получится отличный рупорный громкоговоритель. Много переделок потребует сантехническое оборудование; необходимо будет также сделать новые двери. Но новый уклад жизни в этих поселениях устранит разобщенность, свойственную жизни в высотных домах.

New Scientist, December 5, 1974

По своей структуре снег представляет собой удивительное вещество. Водяной пар в холодном воздухе, минуя стадию жидкости, превращается сразу в кристаллы снега, слой пушистых хлопьев которого является легчайшим звукопоглощающим и теплоизолирующим материалом. Какая жалость, что он тает уже при нуле градусов. Химики фирмы КОШМАР пытаются получить искусственный снег из веществ, пары которых способны конденсироваться сразу в твердую фазу. Они впрыскивают горячие пары иода, нафталина и хлористого аммония в большую холодильную камеру, надеясь получить эти вещества в виде снега. Но хотя нафталиновый снег отпугивает моль, а снег из иода имеет прекрасный фиолетовый цвет, в качестве конструкционных материалов они недолговечны: как и обычный снег, они постепенно сублимируются, превращаясь обратно в пар. Нам же необходимо, чтобы полученный снег затвердевал. Поэтому специалисты фирмы КОШМАР подыскивают мономер, который не только конденсируется из газообразного в твердое состояние, но и полимеризуется под действием ультрафиолетового излучения, превращаясь в устойчивую пластмассу. Это позволит получить нетающий при обычных условиях полимерный снег.

Новая технология произведет революцию в строительстве. Вместо того чтобы возиться с кирпичом, цементом, строительными лесами, достаточно будет возвести на строительной площадке большой надувной шатер. Внутри шатра генератор снега фирмы КОШМАР устроит искусственный снегопад. Хлопья искусственного мономерного снега толстым слоем укутают надувные каркасы. После этого включаются кварцевые лампы — снег полимеризуется и отвердевает. Из каркасов выпускают воздух и переносят их на следующий этаж. Дом из полимерного снега («полииглу») абсолютно водонепроницаем: водоотталкивающая поверхность полимера не позволит воде проникнуть в поры материала. В то же время стены этого дома будут «дышать» и внутри полииглу никогда не будет сырости и духоты. Более того, Дедал утверждает, что вентиляционная система, засасывающая воздух прямо через пористые стены, будет также предотвращать утечку тепла, так что жильцам не придется платить за отопление.

New Scientist, March 9, 1978

Комментарий Дедала

Вскоре после публикации этой заметки Дж. Фоше сообщил в редакцию, что корпорация «Юнион карбайд» уже более десяти лет выпускает конденсирующийся из пара полимер под названием «парилен» (полипараксилилен). Он также любезно прислал нам техническую документацию, из которой следует, что парилен не образует снега, а конденсируется в твердый монолитный продукт, абсолютно лишенный пор. Так держать!


Пикфикские записки

По мнению Дедала, система «Престел», предназначенная для передачи информации на экраны телевизоров, пока еще не вполне совершенна. Телевизионное изображение не положишь к себе на стол, чтобы проанализировать данные в спокойной обстановке, не подошьешь в папку. Эта информационная система останется несовершенной до тех пор, пока не будет изобретен способ получать устойчивую копию телевизионного изображения. Такой способ предлагает Дедал. Он обращает внимание на тот факт, что если охладить жидкокристаллический индикатор электронных часов или микрокалькулятора ниже температуры замерзания жидкого кристалла, то имевшееся на нем изображение зафиксируется. Далее. Изображение на телевизионном экране создается электронным лучом, и поэтому разные точки экрана имеют не только различную яркость, но и разный заряд. Следовательно, наложив на телевизионный экран жидкокристаллический индикатор, мы получим на нем то же самое изображение. Телекопировальная бумага фирмы КОШМАР «пикфикс» представляет собой просто тонкий слой жидкого кристалла с высокой температурой плавления, зажатый между листами токопроводящего поляроида. Достаточно прижать этот лист к телевизионному экрану, включить на короткое время нагреватель, и телевизионное изображение будет перенесено на «пикфикс». После охлаждения изображение зафиксируется, и мы получим устойчивую копию.

Это оригинальное изобретение не только поднимет систему «Престел» на качественно новый уровень, но и позволит сэкономить немалое количество бумаги. Например, можно будет прекратить печатать газеты огромными тиражами, а просто ежедневно передавать по телевидению изображения газетных полос. Читатели смогут снимать копии с любого газетного материала и хранить их, сколько захочется. Один и тот же лист «пикфикса» можно использовать для получения копий неоднократно, подобно магнитной пленке в звукозаписи: при нагревании бумаги «пикфикс» изображение «стирается». Почтовое ведомство сможет предложить новый вид услуг: факсимильную передачу писем с помощью телевизора. Такие письма разумно будет передавать по телефонным линиям связи в ночное время, когда эти линии не загружены. Немало радости принесет это избретение и поклонникам телезвезд — они получат возможность переснимать портреты своих кумиров прямо с экрана. Бумага «пикфикс» вообще станет универсальным носителем информации. На ней даже можно будет писать горячим электростатическим пером.

New Scientist, March 19, 1981

Руководство к получению копий на бумаге «пикфикс»

1. Вложите лист бумаги. После закрытия прозрачной нагревательной крышки на бумаге получится изображение, повторяющее изображение на экране телевизора.

2. В нужный момент выключите нагреватель. Изображение на бумаге мгновенно зафиксируется.

3. Откройте крышку и возьмите полученную «фотографию».

Из записной книжки Дедала

Жидкокристаллические соединения имеют две «точки плавления»: при температуре ниже нижней «точки плавления» они находятся в твердом состоянии, а выше верхней — представляют собой истинные жидкости. В интервале же между этими точками они находятся в промежуточном состоянии — в виде анизотропной жидкости с упорядоченной ориентацией молекул. Для бумаги «пикфикс» нам нужен жидкий кристалл, нижняя точка плавления которого несколько выше комнатной температуры (чтобы полученное изображение фиксировалось при нормальной температуре), но в то же время легко достигается при слабом нагревании. Для опытного образца подошел бы 4-метокси-4'-(н-бутил)-азоксибензол (нижняя точка плавления его соответствует температуре 42°C, а верхняя — 77°C).

Пожалуй, наиболее подходящими для наших целей будут нематические жидкие кристаллы, так как при их использовании для управления индикатором требуется минимальное напряжение: достаточно уже 5–10 В, а если подойти к делу с умом, то и меньше. В отсутствие электрического поля молекулы жидкого кристалла не обладают оптической активностью. Но если поместить нематический жидкий кристалл в электрическое поле, то плоскость поляризации проходящего через него света будет вращаться. Поместив жидкий кристалл между скрещенными поляроидами, мы сможем наблюдать изменение ориентации молекул кристалла под действием электрического поля. В отсутствие поля такой пакет непрозрачен для света — бумага «пикфикс» будет казаться черной. Если наложить такую бумагу на телевизионный экран, то электрическое поле, создаваемое электронным лучом, изменит ориентацию молекул и мы получим на бумаге позитивное изображение телевизионного кадра. Нетрудно создать и негативную бумагу «пикфикс» — для последующего размножения изображения фотографическим способом.

Проблемы. Быстродействие жидкокристаллических индикаторов составляет десятки миллисекунд, что намного больше времени, в течение которого электронный луч рисует одну «точку» телевизионного изображения. Нам придется подобрать сопротивление утечки таким образом, чтобы заряд на телевизионном экране сохранялся на протяжении всех 40 мс — времени проекции одного телевизионного кадра. Это позволит нам переснимать отдельные кадры телеизображения, если только мы сумеем достаточно быстро охлаждать бумагу. Для этого бумага «пикфикс» должна быть очень тонкой, что желательно и по многим другим причинам.

При замораживании, т. е. переходе в истинно кристаллическое состояние, ориентация молекул жидкого кристалла, обусловленная внешним электрическим полем, не сохранится, поскольку энергия межмолекулярного взаимодействия в истинном кристалле на несколько порядков выше энергии, используемой для переориентации молекул в жидкокристаллическом состоянии. Иначе говоря, при замораживании изображение исчезает. — Прим. ред.

Использование. Помимо очевидных применений бумаги «пикфикс» — для быстрого снятия копий с телевизионного экрана и в дисплеях ЭВМ — можно назвать по крайней мере еще два:

а. Термограммы. Если положить бумагу «пикфикс» на поверхность и подать на нее короткий импульс напряжения, то мы получим прозрачное изображение тех участков поверхности, температура которых превышает 42°C (нижняя точка плавления жидкого кристалла). Такие термограммы могут использоваться в медицине, технике, теплотехнике и т. п.

б. Электрограммы. Если положить бумагу на плату электронного прибора и быстро сильно нагреть ее, то мы получим прозрачное изображение тех точек, где электрическое напряжение превышает 5 В (пороговое напряжение для данной бумаги). Такие электрограммы очень удобны для диагностики повреждений в электронных приборах, для поиска скрытой электропроводки, проверки аккумуляторов и т. п.


Неньютоновы штаны

Втискиваясь как-то в накрахмаленную рубашку, Дедал задумался о механических свойствах одежды. Он пришел к мысли, что волокна, обладающие ярко выраженными нелинейными механическими свойствами, подняли бы портняжное дело на качественно новый уровень. Реальные жидкости в своем поведении сильно отклоняются от ньютонова закона вязкости, проявляя очень широкий спектр нелинейных механических свойств. Одна крайность — это дилатансия (значительное повышение вязкости с увеличением нагрузки), другая — тиксотропия (значительное уменьшение вязкости с увеличением нагрузки). Известны также жидкости, у которых наблюдаются гистерезис и другие аномальные свойства.

Поэтому Дедал придумывает способ изготовления капиллярных волокон, заполненных такими жидкостями, и подыскивает полимеры с нелинейными свойствами, пригодные для изготовления волокон. Прежде всего его интересует волокно с ярко выраженной дилатансией. Изготовленная из такого волокна ткань не мешает обычным медленным движениям тела, но становится очень жесткой при попытке совершить резкое движение. Одежда из этой ткани очень пригодится для чрезмерно подвижных детей и суматошных сангвиников — она заставит их совершать плавные и грациозные движения и отучит от порывистости и угловатости. Такая одежда найдет большой спрос в институтах красоты и в школах йоги, где превыше всего ценится изящество жестов. К сожалению, стирать эту одежду будет очень трудно, поскольку с нею не справится ни одна стиральная машина. Но, поскольку дилатансия зависит от температуры, Дедал надеется добиться того, чтобы в горячей воде такая одежда становилась абсолютно мягкой, а после охлаждения восстанавливала свои нелинейные свойства.

Дилатантная одежда поможет также в борьбе с нарушителями общественного правопорядка. Например, обязав футбольных болельщиков являться на стадион только в такой одежде, мы существенно умерим их страсти, лишив возможности устраивать потасовки. Таким же способом можно обезопасить автомобилистов на случай аварии. Поначалу Дедал решил, что из его ткани выйдет отличное военное обмундирование. Но, поразмыслив как следует, он понял, что армии нужно нечто совершенно противоположное, и занялся разработкой тиксотропных волокон. Военная форма, пошитая из тиксотропной тканн, будет препятствовать любым движениям, если они не совершаются достаточно энергично; энергичные же движения не встретят никакого сопротивления. Поэтому надевший эту форму будет вынужден либо оставаться совершенно неподвижным, либо двигаться в ускоренном темпе.

New Scientist, May 26, 1977

Из записной книжки Дедала

Как изготовить «неньютоновское волокно»? Очевидно, эти волокна должны быть композитными и содержать некоторое количество обычного волокна, воспринимающего растягивающие нагрузки. Стало быть, либо обычное волокно должно быть покрыто слоем вещества с подходящими реологическими свойствами, либо капиллярное волокно должно быть заполнено соответствующей жидкостью. Второй вариант, по-видимому, предпочтительнее, так как в этом случае можно использовать и липкие, и текучие жидкости. Капилляры можно заполнять жидкостью примерно так, как заполняют конфеты жидкой начинкой, — наполнитель переводится в твердое состояние и покрывается оболочкой, а затем вновь размягчается. Заманчиво было бы взять в качестве наполнителя волокна какую-нибудь съедобную начинку со свойствами неньютоновской жидкости.

Обработка волокон. Прясть и ткать придуманное Дедалом волокно будет непросто. Придется проводить эти процессы при высокой температуре, чтобы уменьшить вязкость. Гибкость тиксотропных волокон может обеспечиваться ультразвуковой вибрацией ткацких и швейных машин. После снятия вибрации готовая одежда станет жесткой. Кстати, такая одежда будет обладать любопытным свойством, особенно если тиксотропия будет проявлять заметный гистерезис. После того как сопротивление одежды будет сломлено, она позволит беспрепятственно повторять одно и то же движение. Так что в такой одежде удобно будет, например, маршировать.

Государственный флаг Великобритании соткан из тиксотропного волокна фирмы КОШМАР. При порывах ветра волокно теряет жесткость и флаг свободно развевается. Когда же ветер стихает, флаг приобретает жесткость и гордо реет в высоте, в то время как обычные флаги бессильно болтаются на флагштоках.


Спасительная безликость

Фотохромные стекла, применяемые в солнцезащитных очках, обладают интересным свойством — они темнеют на свету. Под действием света хлористое серебро, введенное в состав стекла, разлагается, образуя непрозрачные зерна серебра. Эта реакция обратима — при низких уровнях освещенности стекло снова становится прозрачным; таким образом, это стекло автоматически регулирует свою прозрачность. В этой связи Дедал вспоминает основное правило маскировки: избегать контрастов. Многие животные, например, имеют темную спину и светлое брюхо, но, так как спина хорошо освещена, а брюхо остается в тени, их тональности практически сливаются. Фотохромные животные — лягушки и хамелеоны — приспособились еще лучше. Чтобы стать незаметными, они изменяют свою окраску. Но и они не способны варьировать окраску отдельных участков своего тела так, чтобы полностью слиться с окружающим фоном. Такой прием маскировки настолько эффективен, что природа, несомненно, им уже воспользовалась, — вполне возможно, что животным с таким камуфляжем до сих пор успешно удавалось избегать встречи с человеком.

Дедал пытается перенести этот принцип на человеческое общество. Он давно задумывался над тем, почему когда-то столь пышное мужское платье в викторианскую эпоху стало весьма унылым и до наших дней остается таковым, по крайней мере в повседневной н деловой жизни. По мнению Дедала, это объясняется стремлением людей не привлекать к себе особого внимания со стороны: эксцентрично или броско одетый субъект как бы напрашивается на неприятности. Так появились деловые костюмы и белые воротнички. Дедал же разрабатывает фотохромный костюм, не имеющий себе равных по неприметности. Освещенный светом, он темнеет, уменьшая свою отражательную способность; когда же на него падает мало света, он светлеет. Благодаря этому такой костюм будет казаться абсолютно однотонным. Глаз человека особенно чувствителен к контрастам. Так что фотохромный костюм, совершенно лишенный контрастности, будет практически незаметен и его обладатель не привлечет к себе ничьего внимания. Фотохромные крем для рук и лосьон для лица доведут камуфляж до совершенства. Дедал предвидит огромный спрос на свою фотохромную продукцию.

New Scientist, August 16, 1973

Вполне возможно, что животным с идеальным камуфляжем до сих пор удавалось избегать встречи с человеком.

Комментарий Дедала

В фотохромном стекле происходит классическая фотографическая реакция с получением атома серебра и атома хлора.

Атом хлора, освобождающийся в фотографической эмульсии, тут же необратимо связывается с желатином, а атом серебра становится центром проявления. В стекле хлор не может отойти далеко от атома серебра, и поэтому реакция обратима. Равновесие реакции зависит от освещенности стекла.

Быстродействие галогеносеребряных стекол для солнцезащитных очков измеряется минутами. При такой скорости реакции изменение окраски фотохромного костюма не поспевало бы за изменениями освещенности, возникающими при движении. Но в более совершенных фотохромных системах — например, в стеклах очков для защиты глаз от вспышки, сопровождающей ядерный взрыв, — продолжительность реакции уменьшается до микросекунд. Системы с подобными свойствами прекрасно подошли бы для фотохромного костюма.

Роль светотени в зрительном восприятии подробно обсуждалась Дж. Беком (Scientific American, Aug. 1975, p. 62); объект, не подчиняющийся обычным законам распределения света и тени, очень трудно, а порой невозможно распознать, как бы пристально мы ни разглядывали его. Глаз не в состоянии определить фактуру поверхности и форму без привычных переходов светотени. Представьте себе теперь комнату, стены, пол и потолок которой оклеены хромными обоями. Каким бы ярким ни было освещение, любой фотохромный объект, помещенный в эту комнату, окажется невидимым, поскольку между ним и фоном не будет контраста. Какой простор для иллюзионистов!


Звездные затмения

Дедал размышляет, какой вклад могла бы внести небогатая Великобритания в развитие космических исследований. За американцами нам, конечно, не угнаться, но с помощью своих европейских соседей мы могли бы разогнать какой-нибудь легкий объект до космической скорости. Солнечные затмения, которые, как известно, происходят, когда Луна закрывает солнечный диск, дают много полезной информации. Поэтому Дедал планирует вывести на орбиту непрозрачный спутник, который будет закрывать звезды и создавать искусственные звездные затмения. Специалисты фирмы КОШМАР конструируют космический зонд, представляющий собой тонкую оболочку из полимерной пленки, которая в космосе под действием небольшого внутреннего давления расправится и превратится в шар диаметром 1 км. Выведенный на околосолнечную орбиту в плоскости Млечного Пути, для земного наблюдателя он будет иметь достаточный угловой размер, чтобы покрывать множество интересных звезд.

Вся прелесть этого проекта состоит в том, что покрытия звезд можно будет наблюдать в недорогие телескопы с не очень высокой разрешающей способностью. Нам не обязательно получать четкое изображение звезды — достаточно принять идущий от нее свет, используя для этого простой фотоумножитель. Поскольку большинство звезд излучают свет равномерно, резкое изменение сигнала от фотоумножителя будет означать, что произошло покрытие звезды зондом. Точное время и степень покрытия дадут более подробную информацию о координатах, размерах и радиальном распределении яркости исследуемой звезды, чем непосредственное наблюдение ее в телескоп. Устанавливая перед фотоумножителем различные фильтры, можно изучать и спектральные характеристики звезд. При диаметре зонда 1 км наблюдатели, находящиеся на Земле на расстоянии более 1 км друг от друга, будут наблюдать покрытие по-разному, так что большое число любителей, вооруженных дешевыми телескопами, быстро соберут огромное количество новой информации.

Вначале Дедал опасался, что придется просить американцев вести слежение за нашим зондом и сообщать нам его местоположение. Но теперь он придумал, как вести прямое визуальное наблюдение за зондом: нужно нанести на шар отражающее покрытие, и тогда отовсюду можно будет увидеть маленькое отражение Солнца точно в центре зонда. Чтобы не спутать зонд со звездами, поверх отражающего покрытия придется нанести слой коричневого лака: это позволит безошибочно отыскать зонд среди звезд, поскольку коричневых звезд не существует.

New Scientist, September 27, 1979

Из записной книжки Дедала

Нас интересуют звезды, видимые в недорогой телескоп как отдельные объекты, т. е. звезды, находящиеся на расстоянии примерно 3–30 тыс. св. лет. (1016–1020 м). Типичная звезда имеет диаметр 109 м, так что угловой размер звезд лежит в пределах 10-7– 10-11 рад. Следует постараться вывести зонд на сильно вытянутую околосолнечную орбиту, чтобы расстояние между зондом и Землей изменялось в пределах 0,1–10 радиусов орбиты Земли (1010–1012 м). Чтобы покрывать интересующие нас звезды, такой зонд должен, следовательно, иметь диаметр около 103 м; тогда его угловой диаметр составит 10-7–10-9 рад. Для разных звезд будут наблюдаться разные затмения: полные или частные.

Как следить за зондом? Вблизи центра алюминированного шара (напоминающего первые пассивные ретрансляторы серии «Эхо») будет наблюдаться небольшое изображение Солнца. Угловой диаметр Солнца для земного наблюдателя равен около 0,01 рад; угловой размер мнимого изображения Солнца на выпуклом зеркале будет меньше в r/2d раз, где r — раднус кривизны зеркала, d — расстояние между зеркалом и Солнцем. При наблюдении с расстояния, равного радиусу земной орбиты, угловой размер мнимого изображения Солнца составит а = 0,01 × r/2d = 0,01 × 103/(2×1011) = 5×1011 рад и будет сопоставим с угловыми размерами покрываемых звезд. Поэтому изображение Солнца удастся отчетливо наблюдать, что обеспечит возможность слежения за зондом, но в то же время оно не будет настолько ярким, чтобы «заглушать» свет исследуемой звезды.

Сбор информации. Направим на исследуемую звезду недорогой телескоп, в фокусе которого помещен фотоумножитель. Нас вполне устроит рефрактор или рефлектор с большой апертурой (создаваемые им аберрации в данном случае нас мало волнуют); вполне подойдет просто зеркало от большого прожектора (в своей знаменитой работе по изучению флуктуации яркости Сириуса Хэнбери-Браун и Твисс использовали именно такие зеркала с фотоумножителями). Не требуется, чтобы оптика давала хорошее изображение звезды и обеспечивала разрешение исследуемой звезды от соседних, непокрываемых, звезд. Соседние звезды создадут только дополнительную фоновую освещенность, увеличив сигнал фотоумножителя. Мы будем просто регистрировать выходной сигнал фотоумножителя и искать характерные провалы, соответствующие покрытию звезды зондом. Кстати, зонд можно несколько усовершенствовать. Если раскрасить зонд черными полосами и заставить его вращаться, то солнечный зайчик на поверхности зонда будет мерцать. Еще лучше приделать к зонду огромные крылья, как у ветряной мельницы. Тогда, во-первых, он захватит гораздо больший участок неба и число наблюдаемых покрытий увеличится, а во-вторых, при соответствующем устройстве лопастей покрытия звезд различного диаметра будут резко отличаться друг от друга. Наши астрономы-любители быстро соберут много новых данных об угловых размерах большого числа звезд.

Кстати говоря, неплохо было бы запустить такой же спутник на околоземную орбиту. Благодаря своему большому диаметру он обеспечит гораздо большее число покрытий, хотя и более кратковременных. Если же вывести его на полярную орбиту (т. е. орбиту, проходящую вдоль небесного меридиана), то он мог бы покрыть все небо.


Огонь, вода и медные трубки

Потери на трение при движении судна по воде возрастают пропорционально кубу скорости, а когда подводная часть судна обрастает ракушками, становятся еще больше. Дедал размышляет над тем, какую экономию принесло бы устранение этого трения. Вначале он намеревался использовать принцип воздушной подушки, изготовив корпус из пористого материала и прокачивая через него воздух. Тонкий слой воздуха будет служить идеальной смазкой для подводной части судна. Но если насосы откажут, вода просочится сквозь поры в трюм и корабль затонет. Затем Дедал вспомнил, как долго капля воды может плясать на раскаленной сковородке, прикоснуться к которой ей мешает паровая подушка. Аналогично раскаленное докрасна судно создавало бы под собой паровую подушку; одновременно была бы решена и проблема обрастания подводной части. Расход мощности при этом был бы незначительным; коэффициент теплопередачи паровой подушки очень низок, паровая подушка служит хорошей теплоизоляцией между корпусом судна и водой. Остается, правда, проблема борьбы с коррозией, и чтобы машинное отделение не было, как всегда, сущим адом, потребуется хорошо теплоизолировать внутренние помещения корабля. Дедал намеревается превратить обычную двухслойную обшивку судна в своего рода плавучий «термос» с электрическим подогревом наружной оболочки. Хотя раскаленный докрасна винт мог бы оказаться необычайно эффективным движителем, из эстетических соображений Дедал предпочел бы установить на своем судне универсальный энергоблок. Он предлагает оснастить судно подводным паровым пульсирующим реактивным двигателем, который представляет собой подогреваемую трубу: спереди в нее попадает забортная вода, а сзади из нее выбрасывается мощная пульсирующая струя пара. По сути, эта конструкция — гигантская копия известной детской игрушки.

New Scientist, May 25, 1967

Центральноамериканская ящерица-василиск (известная под местным названием «Иисус Христос») способна в буквальном смысле слова ходить по воде. Она делает это, быстро перебирая своими широкими лапами-подушечками, подобно тому, как прыгает по воде плоский камушек. Но если это может делать ящерица, то человек — тем более, восклицает Дедал. Однако после нескольких неудачных экспериментов, в которых добровольцы, обутые в снегоступы, пытались пробежать по плавательному бассейну загородного клуба фирмы КОШМАР, Дедал был вынужден отнестись всерьез к техническим сложностям хождения по воде. Прежде всего, решил он, нужна обувь с большой площадью подошвы, чтобы нога отталкивалась от воды, не погружаясь глубоко. Простое решение состоит в том, чтобы раскалить подошву докрасна — тогда она будет удерживаться над поверхностью воды на паровой подушке. Давление пара в основном будет направлено вверх, однако, наклоняя слегка ступню, можно создать реактивную струю пара, помогающую при ходьбе.

 Созданный фирмой КОШМАР опытный образец ботинка для хождения по воде имеет изолированную от ноги большую плоскую подошву, которая раскаляется маленькой газовой горелкой.

 «Водоходец» в таких ботинках ловко шагает по воде, и каждый его шаг сопровождается громким шипением пара. Реактивная сила паровой струи и практически полное отсутствие трения позволяют ему развивать скорость во много узлов. Но испытатели первых моделей ботинок не могли удержаться на ногах из-за сильного скольжения и шли ко дну, извергая клубы пара. Тогда Дедал решил приделать к ботинкам полозья, что позволяло скользить по воде, как по льду при катании на коньках. Наконец-то морская пучина перестанет внушать людям ужас. Жертвы кораблекрушения спокойно добредут до берега, не рискуя ни утонуть, ни погибнуть от переохлаждения; чего им придется опасаться, так это перегрева. Отважные водные горнолыжники будут бесстрашно выписывать фигуры на скатах океанских валов. Появятся новые — и уж совсем неспортивные — возможности охоты на водоплавающую дичь. И может быть, начнут приручать ящериц-василисков ради удовольствия прогуливаться с ними по водной глади.

New Scientist, January 10, 1974

Комментарий Дедала

Кинограммы движений ящерицы-василиска, полученные Джошуа Лирмом, приводятся в Scientific American (Sept. 1973, p. 70).


Ехали медведи…

Дедал критикует усиленно предпринимаемые в настоящее время попытки найти общий язык с дельфинами, так как убежден, что они будут безуспешными, пока не найдется общая тема для «разговора». Поэтому он намеревается познакомить дельфинов с нашим образом жизни, придумав для них своего рода «акваланг наоборот». Это небольшой воздушный шар, оборудованный подвеской для дельфина, снабженный устройством для увлажнения кожи животного и очками, обеспечивающими ему нормальное зрение в воздухе. На плавники дельфин наденет большие «воздушные ласты», позволяющие ему плавать в воздухе. Переход в новую среду, считает Дедал, будет животным очень полезен: им, с их огромным мозгом, наверняка уже давно наскучило унылое подводное однообразие. Дедал представляет себе, с каким интересом дельфины будут изучать нашу жизнь. Возвращаясь в родной бассейн, дельфин-воздухоплаватель зальет балластную цистерну воздушного шара водой и оставит свой «транспорт» иа «стоянке». В качестве первого опыта Дедал предлагает установить на железнодорожную платформу большой аквариум и пустить ее по кольцевой колее, часть которой проходит по дну дельфинария. Дельфины научатся заплывать в аквариум и кататься в нем, привыкая таким образом путешествовать по суше.

Другой проект Дедала связан с использованием тягловых животных, которые до сих пор остаются незаменимыми в развивающихся странах. Дедал считает велосипед великолепным изобретением, так как благодаря эффективному использованию мускульной силы он увеличивает скорость передвижения человека по крайней мере в пять раз. Сделав велосипед для быка, мы во много раз увеличим полезную работу, совершаемую этим могучим, но медлительным животным. Четырехколесный опытный образец, сконструированный Дедалом, приводится в движение педалями через автоматическую коробку передач. Предполагается, что направлять движение такого транспорта будет человек. Однако Дедал хочет попробовать предоставить управление самому животному, чтобы посмотреть, как оно отнесется к новому для него способу передвижения. Вспоминая, однако, сколь агрессивными становятся люди, садясь за руль автомобиля, Дедал опасается, что подобное может случиться и с животными; боится он также и того, что, привыкнув к новому способу передвижения, животные впредь откажутся передвигаться обычным способом.

New Scientist, September 25, 1969


Как извлечь пользу из подделки продуктов

Будучи человеком некурящим, Дедал терпеть не может, когда его обкуривают табачным дымом. В целях самозащиты он изобрел простой способ досадить курильщикам. Многие относительно безобидные вещества при высокой температуре выделяют ядовитые соединения; пары четыреххлористого углерода, например, дают отравляющий газ фосген. Четыреххлористый углерод и сам по себе токсичен, но он находится в близком родстве с совершенно безвредными фреонами, которые используются в качестве хладагентов в аэрозольных баллончиках. Придуманное Дедалом средство против курильщиков — это аэрозоль, который незаметно распыляется, например, в пассажирском вагоне. Некурящие пассажиры ничего не заметят, но беспардонный курильщик будет затягиваться такой кошмарной смесью, что ему придется быстро выбросить свою сигарету. Это средство можно применять и в зале кинотеатра, и на борту авиалайнера.

Подобный принцип можно использовать и для борьбы с другими антиобщественными явлениями. Дедал, например, вспоминает антабус — лекарство, которое при приеме алкоголя вызывает жар, испарину и отвращение к спиртному. Нетрудно начинить антабусом какие-нибудь орешки, с помощью которых хозяйка сможет незаметно умерить пыл невоздержанных гостей. В этой же связи Дедал отмечает, что вкус пищи определяется ничтожными количествами определенных веществ. Дедал собирается изготовить пилюли из лишенных вкуса веществ, способных реагировать с отдушками в тортах и пирожных и придавать кондитерским изделиям неприятный вкус. Безвольный сладкоежка мог бы принять перед обедом такую пилюлю, и у него пропала бы всякая охота нарушить диету. К сожалению, этот метод могут взять на вооружение владельцы кафе и ресторанов и использовать его в своей конкурентной борьбе, что окончательно подорвет доверие гурманов к гастрономическому искусству.

New Scientist, May 10, 1973

В свое время Дедал предлагал экономить средства, расходуемые на здравоохранение, выдавая всем работающим ежегодно по дюжине незаполненных больничных листов и установив на улицах автоматы по продаже таблеток, содержащих смесь аспирина, пенициллина и валидола. Тогда поликлиники можно будет закрыть. Теперь, однако, Дедал признает, что самолечение — хотя оно и может упразднить официальную медицину подобно тому, как супермаркет сделал это с зеленной лавочкой, — чревато опасностью передозировки. Дедал намерен бороться с этой опасностью тем же изящным способом, каким общество «укротило» такие сильнодействующие средства, как кофеин и алкоголь: употреблением в сильно разбавленном виде, ибо организм сам регулирует допустимый объем потребляемой жидкости. Поэтому биохимики фирмы КОШМАР разрабатывают новые пищевые продукты и напитки, содержащие небольшие количества лекарственных веществ: овсянку с бензедрином, от которой с утра прочищаются мозги, колбасу с антибиотиками (она, кстати, не будет портиться), портвейн «Спокойной ночи» со снотворным. Чтобы этими продуктами не злоупотребляли, им придается вкус, не очень приятный для человека. Потребность в них будет ощущаться лишь постольку, поскольку они улучшают самочувствие: ведь, например, кофе мы ценим в основном за его способность мягко снимать напряжение. Новые продукты будут продаваться по высокой цене, но не из-за стремления фирмы КОШМАР обеспечить себе огромные прибыли, а для того, чтобы эти продукты потребляли только те, кому они действительно нужны. Дедал глубоко верит в способность людей инстинктивно определять, что для них хорошо, а что плохо, если их, конечно, не сбивает с толку низкая цена или приятный вкус. А чтобы не вырабатывать у людей зависимость от новых продуктов и предотвратить злоупотребление ими, вводимые в продукты лекарственные вещества будут время от времени менять своих «носителей»: например, вместо портвейна снотворное будет вводиться в колбасу. Те, кто выпивает для сна рюмочку лишь по привычке, перестанут получать снотворное, но из-за самовнушения эффект может сохраниться. Тем же, кто действительно не может уснуть без снотворного, придется есть на ночь колбасу.

New Scientist, February 19, 1976

Аэрозоль против курильщиков, изготовленный фирмой КОШМАР.


Рекомендуемая литература

1. Розен Б. Я. Загадка окаменелой смолы. — Наука и жизнь, 1952, № 8, с. 23.
2. Ощепков П. К. Жизнь и мечта. — М.: Московский рабочий, 1977.
3. Патрикеев В. В. Циркуляционный насос. — Заводская лаборатория, 1947, № 10, с. 1269.
4. Уокер Дж. Физический фейерверк. — М.: Мир, 1979.
5. Прандтль Л. Эффект Магнуса и ветряной корабль. — УФН, 1925, т. 5, с. 1.
6. Михайлов В. Мысль, извлеченная из холодильника. — Изобретатель и рационализатор, 1982, № 3, с.16–17.
7. Мартинсон Г. Г. Загадки пустыни Гоби. — М.: Наука, 1974.
8. Брабсен Г. Родной язык и мозг. — Курьер ЮНЕСКО, март 1982, с. 28.
9. Космические циклы и рнтмы жизни. Сб. статей. Серия «Новое в жизни, науке и технике». Биология, вып. 8. — М.: Знание, 1981.
10. Горюнов Ю. В., Перцов Н. В., Шумм Б. Д. Эффект Ребиндера. — М.: Наука, 1966.
11. Воронин Л. Г. Физиология сна. — М.: Знание, 1974.
12. Ротенберг В. С. Адаптивная функция сна. — М.: Наука, 1982.
13. Вуд В. Вихревые кольца. — Квант, 1971, № 12, с. 28–30.
14. Экспериментальные исследования по физике облаков и приборы, Труды ИЭМ, вып. 1 (33). — М.: Гидрометеоиздат, 1972.
15. Бойс Ч. М. Мыльные пузыри. — М. — Л.: Детиздат, 1937.
16. Кузнецов С. И., Иванов М. В., Ляликова Н. Н. Введение в геологическую микробиологию. — М.: изд-во АН СССР, 1962.
17. Вернадский В. И. История минералов земной коры в 2-х томах, т. 1, вып. 2. — М.: изд-во АН СССР, 1959.
18. Тринг М., Лейтуэйт Э. Как изобретать. — М.: Мир, 1980.
19. Вишницкий А. Л., Ясногородский И. 3., Григорчук И. П. Электрохимическая и электромеханическая обработка металлов — Л.: Машиностроение, 1971.
20. Потапов В. М. Стереохимия. — М.: Химия, 1976, с. 460.
21. Вебер В., Гоккель Г. Межфазный катализ в органическом синтезе. — М.: Мир, 1980.
22. Риффо К. Будущее — океан. — Л.: Гидрометеоиздат, 1978.
23. Бронштейн А. И. Вкус и обоняние. — М.: изд-во АН СССР, 1976.


Источник: Дэвид Джоунс, «Изобретения Дедала», издательство "Мир", 1985г.





Устали? - Отдыхаем!

Вверх