Вверх
История физики 20 век (1921-1930г.)
Касс!ная физика на Youtube

Занимательные фишки - 7 класс

Конспекты - 7 класс

Занимательные фишки - 8 класс

Занимательные фишки - 9 класс

Конспекты, учебники, видео - 10-11 класс
"Что кажется нам чудом, на самом деле таковым не является!" - Симон Стевин
Но, что будет, если кота Шрёдингера засунуть в бутылку Клейна и обмотать всё лентой Мёбиуса?

Викторины

Диафильмы по физике

Презентации по физике

Ребусы и  кроссворды

История физики 20 век (1921-1930г.)

1921 г. – Л. Мейтнер предложила модель строения атомных ядер из альфа-частиц, протонов и электронов.
– А. Ланде для описания магнитных моментов атомов ввел g-фактор (множитель Ланде).
– О. Ган открыл явление изомерии атомных ядер (на примере протактиния-234), Предсказано Ф. Содди в 1917 и Ст. Мейером в 1918.
- Р. Ладенбург разработал квантовую теорию дисперсии, в которой показал возможность существования отрицательной дисперсии, Открыл ее экспериментально в 1928.
– К. Рамзауэр при изучении рассеяния медленных электронов в аргоне обнаружил аномальный характер их взаимодействия с нейтральными атомами (эффект Рамзауэра).
– Т. Калуца предложил в единой теории поля пятимерный подход, ввел пятимерное многообразие, наделив его пятимерной метрикой (теории Калуцы). Развита О. Клейном (теория гравитации Клейна – Калуцы).

1921-22 гг. – Объяснение Н. Бором особенностей периодической системы химических элементов (вариант периодической таблицы по Бору).



1922 г. – А. Комптон открыл явление рассеяния коротковолнового излучения на свободном или слабо связанном электроне (эффект Комптона), чем экспериментально доказал существование фотона, постулированного в 1905 А. Эйнштейном. В 1923 Комптон и П. Дебай дали теоретическую интерпретацию этому явлению.
– О. Штерн и В. Герлах экспериментально доказали, что магнитный момент электрона в атоме приобретает лишь дискретные значения (пространственное квантование) (опыт Штерна – Герлаха). Идею определения магнитных моментов атомов в атомном пучке впервые предложили в 1920 П. Л. Капица и Н. Н. Семенов.
– М. Каталан ввел понятие спектральных мулътиплетов.
– Ф. Брэкетт открыл спектральную серию атома водорода в инфракрасной области (серия Брэкетта).
– Предсказание Л. Бриллюэном изменения тонкой структуры спектра при флуктуационном рассеянии света в кристаллах (аналогичные результаты в 1926 получены и Л. И. Мандельштамом). Отсюда название – эффект Бриллюэна – Мандельштама. Экспериментально обнаружен в 1930 Л. И. Мандельштамом Г. С. Ландсбергом и Е. Ф. Гроссом.
– Э. Картан развил геометрию четырехмерного пространства с кручением.
– О. В. Лосев открыл генерацию электромагнитных колебаний высокой частоты контактом металл-полупроводник.
– Дж. Лилиенфельд открыл явление автоэлектронной эмиссии – испускание электронов металлами под воздействием сильного электрического поля.

1922-24 гг. – А. А. Фридман нашел нестационарные решения гравитационных уравнений Эйнштейна и предсказал расширение Вселенной (нестационарная космологическая модель), подтвержденное в 1929 открытием явления раз бегания галактик.

1923 г. – П. Л. Капица поместил камеру Вильсона в магнитное поле и наблюдал искривление траков заряженных частиц. В 1924 с помощью камеры Вильсона, помещенной в магнитное доле, впервые начал количественные исследования взаимодействия релятивистских частиц с веществом Д. В. Скобельцын.
– Предсказание комбинационного рассеяния света (А. Смекал).
– С. И. Вавилов и В. Л. Левшин обнаружили первый нелинейный эффект в оптике – уменьшение поглощения света урановым стеклом с ростом интенсивности света.

1923-24 гг. – Д. де Бройль высказал и развил идею о волновых свойствах материи (волны де Бройля). Эта идея Л. де Бройля о всеобщности корпускулярно-волнового дуализма легла в основу волновой механики Шредингера.

1924 г. – В. Паули для объяснения сверхтонкой структуры спектральных линий, предложил гипотезу ядерного спина.

1924–25 гг. – Ш. Бозе и А. Эйнштейн разработали квантовую статистику частиц с целым спином (статистика Бозе – Эйнштейна).
– А. Эйнштейн построил квантовую теорию одноатомного идеального газа.
– В. Паули сформулировал один из важнейших принципов современной теоретической физики (принцип Паули).

1924 г. – Э. Эпплтон обнаружил ионосферу. В 1926 открыл в ней верхний отражательный слой Е (слой Эпплтона), постулированный в 1902 О. Хевисайдом.

1925 г. – Доказана справедливость законов сохранения энергии и импульса при рассеянии гамма-квантов на электронах для каждого элементарного акта рассеяния (В Боте, Г. Гейгер).
– С. Гаудсмит и Дж. Уленбек постулировали существование внутреннего механического и магнитного моментов у электрона (спиновая гипотеза). Спиновая гипотеза (понятие спина) сразу же разъяснила много трудных вопросов и получила всеобщее признание (к идее спина в 1921 пришел также А. Комптон и в 1925 Р. Крониг).
– В. Гейзенберг сделал решающий шаг на пути преодоления трудностей недостаточно последовательной квантовой теории Бора и, исходя из принципа ограничения только наблюдаемыми величинами и из сопоставления координатам и импульсам особых операторов, заложил основы новой квантовой механики. В этом же году М. Борн и П. Иордан придали идеям Гейзенберга корректную математическую формулировку, введя матрицы координат и импульсов.
– Впервые получена в камере Вильсона фотография расщепления ядра азота альфа-частицами и следа протона и ядра отдачи (П. Блэкетт).
– П. Оже открыл явление авто ионизации возбужденного атома в результате внутреннего перераспределения энергии возбуждения (эффект Оже),
– Разработан метод регистрации заряженных частиц при помощи толстослойных ядерных фотоэмульсий (Л. В. Мысовский и др.).
– Г. Изинг предложил линейный резонансный ускоритель. В 1928 первый успешный эксперимент с таким ускорителем провел Р. Видероэ.
– Х. Крамерс и В. Гейзенберг с помощью принципа соответствия получили полную формулу дисперсии, включающую комбинационное рассеяние (формула Крамерса – Гейзенберга).
– Э. Изинг предложил модель ферромагнетизма (модель Изинга).

1926 г. – Э. Шредингер построил волновую механику и сформулировал ее основное уравнение (уравнение Шредингера), введя для описания состояния микрообъекта волновую функцию, или пси-функцию.
– Завершение М. Борном, В. Гейзенбергом и П. Иорданом и независимо П. Дираком построения формализма нерелятивистской квантовой механики в матричном варианте.
– М. Борн дал статистическую интерпретацию волновой функции.
– Э. Шредингер доказал математическую эквивалентность матричной механики Гейзенберга и волновой механики.
– Установлено первое релятивистское волновое уравнение для частиц с нулевым спином (уравнение Клейна – Фока – Гордона) (О. Клейн, В. Гордон, В. А. Фок).
– Л. Бриллюэн, Г. Вентцель и Х. Крамерс разработали метод нахождения приближенных собственных значений и собственных функций одномерного уравнения Шредингера, устанавливающий связь со старыми правилами квантования Бора – Зоммерфельда (метод БВК).
– Э. Шредингер разработал теорию возмущений – приближенный метод в квантовой механике.
– П. Дирак и П. Иордан разработали теорию преобразований (представлений).
– М. Борн развил приближенный метод решения задачи о рассеянии частиц силовым центром (борновское рассеяние).
– Э. Шредингер выдвинул концепцию волнового пакета.
– Разработана квантовая статистика для частиц с полуцелым спином – статистика Ферми – Дирака (Э. Ферм~ П. Дирак).
– Дж. Ван Флек разработал квантовую теорию диамагнетизма (в 1927 это сделал также Л. Полинг).
– Я. И. Френкель ввел понятия о подвижных дырках в решетке кристалла (дырочная проводимость) и о дефектах кристаллической решетки, представляющих собой дырку и атом в междоузлии (“эффекты по Френкелю”).
– П. Дебай и У. Джиок независимо друг от друга предложили метод получения низких температур при помощи адиабатического размагничивания парамагнетиков (магнитное охлаждение). В 1933 – 34 В. де Гаазом, У. Джиоком и Ф. Саймоном были проведены первые экспериментальные исследования этим методом.
– Х. Буш открыл фокусирующее действие магнитного поля и разработал электронную магнитную линзу, положив начало электронной оптике.

1926-27 гг. – Построена (Л. Томас, Э. Ферми) модель для описания электронной оболочки тяжелого атома с сравнительно однородным распределением плотности электронов (модель Томаса – Ферми).
– Х. Крамерс и Р. Крониг в классической электродинамике сформулировали дисперсионные соотношения (соотношения Крамерса – Кронига).

1927 г. – В. Гейзенберг сформулировал фундаментальное положение квантовой механики – принцип неопределенности.
– Н. Бором сформулирован принцип дополнительности.
– Открытие дифракции электронов (К. Дэвиссон, Л. Джермер, Дж. П. Томсон), предсказанной В. Эльзассером в 1925.

1927– 28 гг. – Разработан метод вторичного квантования (П. Дирак, П. Иордан, О. Клейн, Ю. Вигнер). В 1932 этот метод получил дальнейшее развитие в трудах В. А. Фока.

1927 г. – Л. де Бройль предложил концепцию волны-пилота с целью интерпретации квантовой механики.

1927– 31 гг. - Дж. Нейман дал строгую математическую формулировку принципов квантовой механики.

1927 г. – В. Паули построил нерелятивистское уравнение, описывающее движение заряженной частицы со спином 1/2 во внешнем электромагнитном поле (уравнение Паули).
– П. Дирак построил квантовую теорию излучения, положив начало квантовой теории электромагнитного поля. В 1928-32 П. Дираком, В. Гейзенбергом, В. Паули, Э. Ферми, В. А. Фоком и др. были заложены основы квантовой электродинамики и квантовой теории поля. Идеи последней восходят еще к А. Эйнштейну (1905, 1909), П. Эренфесту (1906) и П. Дебаю (1910).
– Ч. Эллис и У. Вустер обнаружили нарушение баланса энергии в бета-распаде (эксперимент Эллиса – Вустера).

1927 г. – Выполнен первый расчет молекулы водорода, положившей начало квантовой химии (Ф. Лондон, В. Гайтлер).
– Открытие Ю. Вигнером зеркальной симметрии и формулировка закона сохранения четности (введение представления о четности волновой функции).
– В. Паули ввел матрицы для описания спина электрона (спиновые матрицы Паули).
– Д. Деннисон постулировал существование спина у протона и получил для его величины значение 1/2 h .
– Открытие спинов атомных ядер.
– Построение первой кривой зависимости упаковочных коэффициентов от массовых чисел, характеризующей энергию связи атомных ядер (Ф. Астон).
– Предсказание в рамках квантовой теории излучения тождественности квантов вынужденного и первичного излучений, лежащей в основе квантовой электроники (П. Дирак).
– Установление Ф. Хундом двух эмпирических правил, которые определяют последовательность расположения атомных уровней в мулътиплетах (правила Хунда).
– Разработка В. Паули теории парамагнетизма электронного газа (парамагнетизм Паули).
– Дж. Ван Флек разработал общую теорию парамагнитной восприимчивости атомов и молекул и получил парамагнитную добавку к диамагнитной восприимчивости несимметричных атомов и молекул, названную ван-флековским парамагнетизмом.
– Д. В. Скобельцын впервые наблюдал в камере Вильсона, помещенной в магнитном поле, следы заряженных частиц высоких энергий космического излучения, положив начало изучению его природы.
– Я. Клей открыл широтный эффект космических лучей (в 1932 это сделал также А. Комптон).
– Р. Видероэ разработал циклический индукционный ускоритель (к идее этого ускорителя он пришел в 1922). В 1922 идею ускорителя выдвинул также Дж. Слепян.
– Получено прямое доказательство того, что при абсолютном нуле энергии кристалла проявляется как колебания атомов (Р. Джеймс, Э. Ферс).
– Открытие С. И. Вавиловым независимости квантового выхода люминесценции от длины волны возбуждающего излучения (закон Вавилова).

1927-28 гг. – Выдвинута идея о существовании в металлах энергетических зон (М. Стрэтт).

1928 г. – П. Дирак вывел квантовомеханическое уравнение, описывающее движение релятивистского электрона (релятивистская квантовая механика). Из него вытекало существование у электрона спина 1/2 h .
– Л. И. Мандельштам и М. А. Леонтович построили теорию прохождения частицы через потенциальный барьер. В 1927 Р. Оппенгеймер рассчитал в общем виде прохождение частиц через барьер между двумя потенциальными ямами.
– Разработка теории альфа-распада как туннельного процесса (Дж. Гамов, Э. Кондон, Р. Гёрни).
– А Зоммерфельд разработал первую квантовую теорию металлов, в которой рассмотрел электронный газ в металлах как идеальную систему, подчиняющуюся статистике Ферми – Дирака Дал объяснение низкой теплоемкости электронного газа,
– Открытие обменного взаимодействия и введение обменных сил (В Гейзенберг, П. Дирак).
– Созданы первые квантовомеханические теории ферромагнетизма, основанные на обменном взаимодействии электронами: коллективизированная модель (Я. И. Френкель) и модель локализованных спинов (В. Гейзенберг),
– Р. Фаулер и Л. Нордгейм объяснили явление холодной эмиссии электронов из металлов на основе электронного туннелирования (модель Фаулера – Нордгейма).

1928– 30 гг. – Разработка Ф. Блохом и Е Бриллюэном основ зонной теории твердых тел.

1928 г. – Дж. Хартри разработал приближенный метод решения задач теории многих тел – метод самосогласованного пол~ развитый в 1930 В. А. Фоком (метод Хартри – Фока).
– Р. Ладенбург экспериментально доказал существование отрицательной дисперсии, предсказанной в 1921 им самим, а в 1924 – Х. Крамерсом.
– Открытие сверхтонкой структуры спектральных линий атомных спектров (А. Н. Теренин, Л. Н. Добрецов, Г. Шюллер).
– Открытие комбинационного рассеяния света в кристаллах (Л. И. Мандельштам, Г. С. Ландсберг) и жидкостях (Ч. Раман, К. Кришнан).

1928 г. – Открытие в жидком гелии при температуре 2,19 К фазового перехода второго рода и установление существования двух разновидностей гелия – гелия I и гелия II (В. Кеезом, М. Вольфке).
– Экспериментально доказана дискретная структура спектра молекулярного кристалла при низких температурах (И. В. Обреимов).
– П. Л. Капица установил закон линейного возрастания электрического сопротивления металла от напряженности магнитного поля {закон Капицы).

1929 г. – Создана квантовая теория эффекта Комптона (О. Клейн, И. Нишина) и сформулировано уравнение, описывающее рассеяние электронов в этом эффекте (уравнение Клейна – Нишины).
– В Гайтлер и Г. Герцберг определили статистику ядра азота (в 1930 это сделал и Ф. Разетти), найдя что оно подчиняется статистике Бозе – Эйнштейна. Это доказывало несостоятельность протонно-электронной гипотезы строения ядер.
– О. Штерн открыл дифракцию атомов и молекул.
– В. Боте и В. Кольхёрстер применили метод совпадений для исследования космических лучей (опыты Боте – Кольхёрстера) и пришли к выводу, что первичное космическое излучение состоит из заряженных частиц.
– Н. Мотт рассмотрел рассеяние на бесконечно тяжелой бесструктурной точечной мишени и вывел формулу для дифференциального сечения рассеяния атома (формула Мотта).
– Н. Мотт предсказал поляризацию электронного пучка при рассеянии.
– Разработка Х. Бете теории кристаллического поля.
– Х. Крамерс сформулировал теорему, имеющую важное значение для проблемы магнетизма кристаллов (теорема Крамерса).
– Введение понятия плазмы и плазменных колебаний (И. Ленгмюр, Л. Тонкс).
– Э. Меррит обнаружил полупроводниковые свойства у германия.

1930 г. – Открыто излучение большой проникающей способности, возникающее при бомбардировке бериллия альфа-частицами (В. Боте, Г. Бекер). Исследование излучения бериллия привело к открытию нейтрона.
– П. Дирак предложил теорию “дырок”, развитую впоследствии В. Гейзенбергом (1934) и Х. Крамерсом (1937).

1930-31 гг. – Создание представления об энергетическом спектре кристалла как о совокупности разрешенных полос энергии разделенных запрещенными промежутками (Р. Пайерлс, Л. Бриллюэн, Р. Крониг и др.).

1930 г. – Дж. Слэтер предложил полярную модель кристаллов.
– И. Е. Тамм разработал квантовую теорию рассеяния света в кристаллах и ввел представление об упругих колебаниях в твердом теле (фононах). Идея фонона содержалась уже в работах А. Эйнштейна (1911) и П. Дебая (1912).
– Создана теория доменного строения ферромагнетиков (Я. И. Френкель, Я. Г. Дорфман).
– Теоретическое предсказание Л. Д. Ландау диамагнетизма электронов в металлах (диамагнетизм Ландау).
– Введение понятия о спиновых волнах (Ф. Блох).
– Ф. Блох установил температурную зависимость самопроизвольной намагниченности ферромагнетика в области низких температур (закон степени три вторых Блоха).
– Л. В. Шубников и В. де Гааз открыли осцилляции электрического сопротивления висмута в магнитном поле при температуре жидкого гелия (эффект Шубникова – де Гааза).
– К. Вагнер обнаружил существование двух типов полупроводников – электронных и дырочных,
– В. Шоттки ввел понятие “дефектов по Шоттки”.

1930-33 гг. – Построение теории сегнетоэлектричества (П. П. Кобеко, И В. Курчатов).

Источник: ФИАН, lebedev.ru





По следам "английских ученых"

  • Можно ли вскипятить воду звуком?

    Если у вас в доме вдруг пропало электричество, не работает электрический чайник, плита, и кончились спички, но зато вопреки всему во всю силу гремит музыка, давайте зададимся вопросом: можно ли вскипятить воду, используя звук? Насколько это реально?

Устали? - Отдохнем!




Новости


Азбука физики
Азбука физики
Викторины
Викторины

Научные игрушки
Научные игрушки
Загадки прошлого
Викторины
Простые опыты
Простые опыты
Парадоксы
Парадоксы
Это интересно
Интересная физика
История техники
История техники
Физика детям
Физика для детей
Библиотека
Библиотека
Знаете ли вы
Знаете ли вы
История физики
История физики
Любознательным
Любознательным
Мысли вслух
Мысли вслух
Этюды об ученых
Ученые-физики
Задачи Г. Остера
Задачи Григория Остера
Умные книжки
Умные книжки по физике
Есть вопросик
Ответы на попросы по физике
Его величество
Все о человеке
Музеи науки
Научные музеи
Достижения
Новости науки и техники

Контакты



Выпускникам

Как сдавать экзамены?
Тактика тестирования
Знаешь ли ты себя?
На урок

Класс!ная физика для любознательных

Презентации и диафильмы по физике

My-shop.ru - Интернет-магазин товаров для образования



Интернет-магазин Лабиринт