Вверх
Лента Мебиуса и ее сюрпризы. Научные игрушки
Касс!ная физика на Rutube

Фильмы об ученых
Фильмы об ученых

Научные игры
Научные игрушки

Азбука физики
Азбука физики

Викторины
Викторины

Парадоксы
Парадоксы

Простые опыты
Простые опыты

BHИMAHИE! Тeмы "ЦOP 7-9 клacc к уроку" ecть в фopмaтe PDF и SWF!
Возможный вариант просмотра SWF-файлов: скачать адобовский флэш-плейер flashplayer_32 скачать здесь. Положить его на рабочий стол компа (или закачать на флэшку и подключить ее к компу). Кликнуть по ссылке нужный ЦОР со страницы сайта, открыть скаченный файл. Приятного просмотра!

Бесконечная лента Мебиуса и ее сюрпризы. Научные игрушки

12.2012

Вот он – автор удивительной ленты Мебиуса!
Немецкий математик и астроном-теоретик Август Фердинанд Мёбиус (1790-1868) - ученик великого Гаусса, известный геометр, профессор Лейпцигского университета, директор обсерватории. Долгие годы преподавания, долгие годы работы – обычная жизнь профессора.

И вот надо же, это случилось под конец жизни! Пришла удивительная идея … это был самое значительное событие в его жизни! К сожалению, он так и не успел оценить значимость своего изобретения. Статья о знаменитой ленте Мебиуса была опубликована посмертно.

Как же называют ленту Мебиуса (иначе лист Мебиуса или петлю Мебиуса) математики?

На языке математики – это топологический объект, простейшая односторонняя поверхность с краем в обычном трёхмерном Евклидовом пространстве, где можно попасть из одной точки этой поверхности в любую другую, не пересекая края.
Достаточно сложное определение!

Поэтому удобнее просто рассмотреть ленту Мебиуса поближе. Берем бумажную полоску, перекручиваем полоску в пол-оборота поперек (на 180 градусов) и склеиваем концы.

В другой раз «мама бы по головке за такую работу не погладила»! Но, на этот раз вы правы! Она должна быть перекрученным кольцом.

Ставим в каком-нибудь месте на полоске точку фломастером. А теперь прочерчиваем вдоль всей нашей ленты линию, пока вам не встретится вновь ваша точка. Вам нигде не пришлось переходить через край – это и называется односторонней поверхностью.

Посмотрите, как интересно проходит прочерченная вами линия: она то внутри кольца, то снаружи! А теперь измерьте длину этой линии - от точки до точки.
Удивляетесь?
Она оказывается в два раза длиннее первоначальной полоски бумаги!

Так и должно быть, ведь у вас в руках лента Мебиуса! А у ленты Мебиуса есть только одна сторона, и мы опять скажем – это односторонняя поверхность с краем.

А если по этой черте заставить ползти, не сворачивая, муравья, то вы получите копию картины художника Мориса Эшера.
Бедный муравей на бесконечной дороге

А можно сделать две немного разные ленты Мебиуса: у одной перекручивать перед склейкой полоску по часовой стрелке, а у другой – против часовой стрелки. Так различаются правая и левая ленты Мебиуса.

А теперь интересные сюрпризы с лентой Мебиуса:

1. Разрежьте ленту Мебиусавкруговую по центральной линии. Не бойтесь, она не развалится на две части! Лента развернется в длинную замкнутую ленту, закрученную вдвое больше, чем первоначальная. Почему лента Мебиуса при таком разрезе не распадается на отдельные части?
Разрез не касался края ленты, поэтому после разреза край (а значит и вся полоска бумаги) останется целым куском.

2. Полученную после первого опыта ленту Мебиуса (закрученную вдвое больше, чем первоначальная, т.е. на 360 градусов) вновь разрежьте по ее центральной линии.
Что получится?
У вас в руках окажутся теперь две одинаковые, но сцепленные между собой ленты Мебиуса.

3. Сделайте новую ленту Мебиуса, но перед склейкой поверните ее не один раз, а три раза (не на 180 градусов, а на 540). Затем разрежьте ее вдоль центральной линии.

Что получилось?
У вас должна получиться замкнутая лента, завитая в узел трилистника, т.е. в простой узел с тремя самопересечениями.

4. Если вы сделаете ленту Мебиуса с еще большим числом полуоборотов перед склейкой, то получатся неожиданные и удивительные фигуры, называемые парадромными кольцами.

5. Если разрезать ленту Мебиуса, не посередине, а отступая от края приблизительно на треть её ширины, то получатся две сцепленные ленты, одна — более короткая лента Мебиуса, и другая — длинная лента Мебиуса с двумя полуоборотами.

Посмотрите, как это можно сделать на практике:

Близкой к ленте Мебиуса односторонней поверхностью является бутылка Клейна.
Интересно, что бутылка Клейна может быть получена путём склеивания двух лент Мебиуса по краям. Однако, в обычном трёхмерном евклидовом пространстве сделать это, не создавая самопересечения, невозможно.

Есть еще один интересный объект, связанный с лентой Мебиуса. Это резистор Мебиуса.

Резистор Мебиуса, как объект изобретения, запатентован в США. Это электрический элемент – трехслойная полоса, в которой два проводящих слоя разделены слоем диэлектрика. Полоса скручена на 180 градусов и образует ленту Мебиуса. Такой резистор не имеет собственной индуктивности, и поэтому не создает магнитных помех, однако, обладает существенной паразитной емкостью.

В истории нередко бывают случаи, когда одна идея приходит в головы одновременно нескольким изобретателям. Так случилось и с лентой Мебиуса. В том же 1858 году идея ленты пришла и к другому ученому - Иоганну Листингу. Он дал название науке, изучающей непрерывность, — топология. А первенство в открытии топологического объекта – ленты досталось Августу Мебиусу.

Мы незаметно встречаем ленту Мебиуса в разных устройствах: это и красящие ленты в матричных принтерах,и ременные передачи, шлифовальные устройства, ленточные конвееры и многие другие. В этом случае срок службы изделия увеличивается, т.к. уменьшается изнашиваемость. А в системах непрерывной записи применение ленты Мебиуса позволяет вдвое увеличить время записи на одну пленку.

Таинственная лента Мебиуса всегда будоражила умы писателей, художников и скульпторов.
Рисунок ленты Мебиуса используется в графике.Вспомните, например, эмблему знаменитой серии научно-популярных книг «Библиотечка „Квант“» или международный символ переработки.

Широко известны рисунки с изображениями ленты Мебиуса голландского художника Мориса Эшера.



Улицы многих городов украшают скульптуры на тему ленты Мебиуса.

Архитекторы используют ленту Мебиуса в новаторских формах. Так, например, выглядит невероятный проект новой библиотеки в Астане (Казахстан)

И все было бы просто, если бы все-таки не некоторая необычность этого загадочного изобретения!





По следам "английских ученых"

  • Можно ли вскипятить воду звуком?

    Если у вас в доме вдруг пропало электричество, не работает электрический чайник, плита, и кончились спички, но зато вопреки всему во всю силу гремит музыка, давайте зададимся вопросом: можно ли вскипятить воду, используя звук? Насколько это реально?
Новости

Задачи Г. Остера
Задачи Григория Остера

Это интересно
Интересная физика

История техники
История техники

Физика детям
Физика для детей

Знаете ли вы
Знаете ли вы

История физики
История физики

Вопросы-загадки
Вопросы-загадки



Этюды об ученых
Ученые-физики

Есть вопросик
Ответы на попросы по физике

Его величество
Все о человеке

Мысли вслух
Мысли вслух

Экзамены?
Тестирование?
Знаешь себя?
На урок

Класс!ная физика для любознательных


ЦОР и ресурсы по физике

Книги  по физике

Забавные коты глазами художников